

Exelon Generation Company, LLC LaSalle County Station 2601 North 21 Road Marseilles, it 61341-9757 www.exeloncorp.com

Nuclear

April 30, 2001

10 CFR 50.36

United States Nuclear Regulatory Commission

Attention: Document Control Desk

Washington, D.C. 20555

LaSalle County Station, Units 1 and 2

Facility Operating License Nos. NPF-11 and NPF-18

NRC Docket Nos. 50-373 and 50-374

Subject:

2000 Annual Radioactive Effluent Report and Triannual

Chlorine Survey Report

Enclosed is the Exelon Generation Company, (EGC), LLC, LaSalle County Station 2000 Annual Radioactive Effluent Report, submitted in accordance with 10 CFR 50.36a(a)(2), and Triannual Chlorine Survey Report.

Should you have any questions concerning this letter, please contact Mr. William Riffer, Regulatory Assurance Manager, at (815) 357-6761, extension 2383.

Respectfully,

Charles G. Pardee Site Vice President

LaSalle County Station

Attachment

cc: Regional Administrator - NRC Region III

NRC Senior Resident Inspector - LaSalle County Station

IE48

### Supplemental Information

### 1. Regulatory Limits

#### a. Gaseous Effluents

- 1) The air dose due to noble gases released in gaseous effluents, from each reactor unit, from the site shall be limited to the following:
  - a) During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and
  - b) During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.
- 2) The dose to an individual from radioiodines and radioactive materials in particulate form, and radionuclides, other than noble gases, with half-lives greater than eight days in gaseous effluents released, from each reactor unit, from the site shall be limited to the following:
  - a) During any calendar quarter: Less than or equal to 7.5 mRems to any organ, and
  - b) During any calendar year: Less than or equal to 15 mRems to any organ.

### b. Liquid Effluents

- 1) The dose or dose commitment to an individual from radioactive materials in liquid effluents released, from each reactor unit, from the site shall be limited:
  - a) During any calendar quarter: Less than or equal to 1.5 mRem to the total body and to less than or equal to 5 mRem to any organ, and
  - b) During any calendar year: Less than or equal to 3 mRem to the total body and to less than or equal to 10 mRem to any organ.

#### c. Total Dose

1) The dose or dose commitment to any member of the public, due to releases or radioactivity and radiation, from uranium fuel cycle sources shall be limited to less than or equal to 25 mRem to the body or any organ (except the thyroid, which shall be limited to less than or equal to 75 mRem) over 12 consecutive months.

### Supplemental Information (continued)

#### 2. Allowable Concentrations

### a. Gaseous Effluents

- 1) The dose rate due to radioactive materials released in gaseous effluents from the site shall be limited to the following:
  - a) For noble gases: Less than or equal to 500 mRem/year to the total body and less than or equal to 3000 mRem/year to the skin, and
  - b) For all radioiodines and for all radioactive materials in particulate form, and radionuclides, other than noble gases, with half-lives greater than eight days: Less than or equal to 1500 mRem/year to any organ via the inhalation pathway.

### b. Liquid Effluents

The concentration of radioactive material released from the site shall be limited to ten (10) times the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to the following:

| Nuclide | DWC (µci/ml) |
|---------|--------------|
| Kr-85m  | 2.00E-04     |
| Kr-85   | 5.00E-04     |
| Kr-87   | 4.00E-05     |
| Kr-88   | 9.00E-05     |
| Ar-41   | 7.00E-05     |
| Xe-131m | 7.00E-04     |
| Xe-133m | 5.00E-04     |
| Xe-133  | 6.00E-04     |
| Xe-135m | 2.00E-04     |
| Xe-135  | 2.00E-04     |
|         |              |

### 3. Average Energy

The average energy of fission and activation gases was calculated for the gaseous effluents released from the site. The average energy is based on the percentage of each fission gas nuclide present and its average energy per Disintegration (E in MeV/dis) for gamma and beta emissions separately.

EGAMMA = 1.19E+00 MeV/dis EBETA = 4.13E-01 MeV/dis

### 4. Measurements and Approximations of Total Radioactivity

### a. Gaseous Effluents

- 1) Containment Vent and Purge System is sampled by grab sample which is analyzed for principal gamma emitters and H-3.
- 2) Main Vent Stack is sampled by grab sample, which is analyzed for principal gamma emitters and H-3.
- 3) Standby Gas Treatment System is sampled by grab sample, which is analyzed for principal gamma emitters.

### Supplemental Information (continued)

4) All release types as listed in 1 and 2 above, at the vent stack and as listed in 3 above, at the Standby Gas Treatment System whenever there is a flow, are continuously sampled by charcoal, particulate and composite samples which are analyzed for iodines, principal gamma emitters, gross alpha, Sr-89 and Sr-90. Noble gases, gross beta and gamma are continuously monitored by noble gas monitors for the vent stack and the standby gas treatment system.

### b. Liquid Effluents

- 1) Batch waste release tanks are sampled each batch for principal gamma emitters, I-131, dissolved and entrained noble gases, H-3, gross alpha, Sr-89, Sr-90 and Fe-55.
- 2) Continuous releases are sampled continuously in proportion to the rate of flow of the effluent stream and by grab sample. Samples are analyzed for principal gamma emitters, I-131, dissolved and entrained noble gases, H-3, gross alpha, Sr-89, Sr-90 and Fe-55.

### 5. Batch Releases

#### a. Gaseous

|    | 1)     | Number of batch releases:                                                            | None     |
|----|--------|--------------------------------------------------------------------------------------|----------|
|    | 2)     | Total time period for batch releases:                                                | N/A      |
|    | 3)     | Maximum time period for a batch release:                                             | N/A      |
|    | 4)     | Average time period for batch releases:                                              | N/A      |
|    | 5)     | Minimum time period for a batch release:                                             | N/A      |
| b. | Liquid |                                                                                      |          |
|    | 1)     | Number of batch releases:                                                            | 3        |
|    | 2)     | Total time period for batch releases: Min.                                           | 1.67E+02 |
|    | 3)     | Maximum time period for a batch release: Min.                                        | 5.99E+02 |
|    | 4)     | Average time period for batch releases: Min.                                         | 5.57E+02 |
|    | 5)     | Minimum time period for a batch release: Min.                                        | 5.32E+02 |
|    | 6)     | Average stream flow during periods of release of effluent into a flowing stream: gpm | 8.30E+06 |

### Supplemental Information (continued)

### 6. Abnormal Releases

a. Gaseous

1) Number of releases: None

2) Total activity released: N/A

b. Liquid

1) Number of releases: None

2) Total activity released: N/A

7. Process Control Program

8.

There were no changes to the Process Control Program during this time period.

- Effluent Monitoring Instrumentation timeclocks and sample anomalies.
  - a. There were no effluent monitoring instrumentation timeclocks exceeded during this time period.
  - b. The cooling pond blowdown composite sampling malfunctioned for a period of three days (11/10/2000 at 10:00 to 11/13/2000 at 10:00). No compensatory sampling was performed due to the immediate restoration of the sampling system once the malfunction was identified. There was no release in progress during this period, therefore this sampling omission period did not compromise the sample integrity for the month of November.
- 9. Offsite Dose Calculation Manual Revisions. The following is a summary of the 2000 Revisions to the Offsite Dose Calculation Manual:

Revision 2.4, Chapter 12,

January 2000

Table 12.4.1-1, Section h (pg. 12-34 & 12-35)

Clarify table 12.4.1-1, step h. to provide the necessary guidance for calculating the noble gas activity at times of drywell purge during steady state noble gas activity releases.

#### Revision 2.5, Chapter 10

March 2000

Page 10-5 Corrected typo in equations 10-3 and 10-4 of section 10.1.3.2.

Page 10-8 Removed "xMF" in equation 10-6 of section 10.2.3.2.1. There was no clear guidance as to which

multiplication factor to use at this point in this equation.

Page 10-9 Added new equation 10-7 to new section 10.2.3.2.2 and defined terms of the equation. To provide the necessary guidance for determining the multiplication factor to be used for the liquid radwaste discharge tank

flow rate.

#### Revision 2.5, Chapter 11

March 2000

Page 11-7 Changed location and nomenclature for control dairy on Table 11-1 (page 11-7). The former control dairy sold the cows and a new control dairy has been identified.

### Supplemental Information (continued)

| Revision 2.5, C | hapter 12                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------|
| March 2000      |                                                                                                         |
| Page 12-5       | Changed "3323" to "3489" in section 12.1.13 to support the power uprate at the station.                 |
| Page 12-39      | Corrected in-correct reference number. Reference to Sections II.3 and II.0 of Appendix I 10CFR Part 50  |
| · ·             | becomes Section II.B and II.C of Appendix I 10 CFR Part 50.                                             |
| Page 12-40      | Corrected in-correct reference number. Reference to Sections II.3 and II.0 of Appendix I 10 CFR Part 50 |
| Ü               | becomes Section II.B and II.C of Appendix I 10 CFR Part 50.                                             |

An entire copy of the ODCM is submitted in accordance with Technical Specification 5.5.1 (refer to Appendix A).

## LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) UNITS ONE AND TWO

### DOCKET NUMBERS 50-373 AND 50-374 GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES

|       |         |         |         |         | Estimated     |
|-------|---------|---------|---------|---------|---------------|
| Units | 1st Qtr | 2nd Qtr | 3rd Qtr | 4th Qtr | Total Error % |

### A. Fission and Activation Gas Releases

| 1. Total Release Activity                   | Ci      | 3.65E+02 | 7.76E+02 | 4.71E+02 | 3.99E+02 | 35% |
|---------------------------------------------|---------|----------|----------|----------|----------|-----|
| 2. Average Release Rate                     | uCi/sec | 4.64E+01 | 9.88E+01 | 5.92E+01 | 5.02E+01 |     |
| 3. Percent of Technical Specification Limit | %       | *        | *        | *        | *        |     |

### **B.** Iodine Releases

| 1. Total I-131 Activity               | Ci      | 1.99E-03 | 3.59E-03 | 9.25E-03 | 8.17E-03 | 35% |
|---------------------------------------|---------|----------|----------|----------|----------|-----|
| 2. Average Release Rate               | uCi/sec | 2.53E-04 | 4.56E-04 | 1.16E-03 | 1.03E-03 |     |
| 3. Percent of Technical Specification | %       | *        | *        | *        | *        |     |
| Limit                                 |         |          |          |          | •        |     |

### C. Particulate (> 8 day half-life) Releases

| 1. Gross Activity                              | Ci      | 3.23E-04 | 4.63E-04 | 7.07E-03 | 5.44E-04  | 33% |
|------------------------------------------------|---------|----------|----------|----------|-----------|-----|
| 2. Average Release Rate                        | uCi/sec | 4.11E-05 | 5.89E-05 | 8.90E-04 | 6.85E-05  |     |
| 3. Percent of Technical Specification<br>Limit | %       | *        | *        | *        | *         | į   |
| 3. Gross Alpha Activity (estimate)             | Ci      | 4.66E-06 | 2.48E-06 | 1.09E-06 | <1.00E-11 |     |

### D. Tritium Releases

| 1. Total Release Activity                      | Ci      | 8.99E+00 | 1.93E+01 | 1.68E+01 | 2.80E+01 | 21% |
|------------------------------------------------|---------|----------|----------|----------|----------|-----|
| 2. Average Release Rate                        | uCi/sec | 1.14E+00 | 2.45E+00 | 2.12E+00 | 3.53E+00 |     |
| 3. Percent of Technical Specification<br>Limit | %       | *        | *        | *        | *        |     |

<sup>&</sup>quot;\*" This information is contained in the Radiological Impact on Man section of the report.

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

### LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) GASEOUS EFFLUENTS-ELEVATED RELEASE

Unit 1 and Unit 2 Continuous Mode

|                                          | 1.03E-03<br><1.00E-06<br>7.30E+01<br>2.99E+01<br>1.58E+02<br><1.00E-06<br>3.67E+01<br><1.00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03<br><1.00E-11 | <1.00E-06 <1.00E-06 1.80E+02 8.60E+01 4.47E+02 <1.00E-06 5.17E+01 <1.00E-06 6.57E+00 5.17E+00 <1.00E-06 7.76E+02 3.59E-03 9.64E-03                                      | 3.50E-04 <1.00E-06 1.03E+02 6.25E+01 2.55E+02 <1.00E-06 3.76E+01 1.27E+01 1.15E-04 <1.00E-06 <1.00E-06 4.71E+02  9.25E-03 2.88E-02              | 5.44E-04 <1.00E-06 1.08E+02 4.30E+01 2.10E+02 <1.00E-06 3.72E+01 <1.00E-06 3.51E-04 <1.00E-06 3.98E+02       |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                          | <1.00E-06 7.30E+01 2.99E+01 1.58E+02 <1.00E-06 3.67E+01 <1.00E-06 4.39E+01 <2.31E+01 <1.00E-06 3.65E+02 1.99E-03 6.32E-03 7.96E-03                                                                | <1.00E-06 1.80E+02 8.60E+01 4.47E+02 <1.00E-06 5.17E+01 <1.00E-06 6.57E+00 5.17E+00 <1.00E-06 7.76E+02 3.59E-03 9.62E-03                                                | <1.00E-06 1.03E+02 6.25E+01 2.55E+02 <1.00E-06 3.76E+01 1.27E+01 1.15E-04 <1.00E-06 <1.00E-06 4.71E+02  9.25E-03 2.88E-02                       | <1.00E-06 1.08E+02 4.30E+01 2.10E+02 <1.00E-06 3.72E+01 <1.00E-06 3.51E-04 <1.00E-06 3.98E+02                |
|                                          | <1.00E-06 7.30E+01 2.99E+01 1.58E+02 <1.00E-06 3.67E+01 <1.00E-06 4.39E+01 <2.31E+01 <1.00E-06 3.65E+02 1.99E-03 6.32E-03 7.96E-03                                                                | <1.00E-06 1.80E+02 8.60E+01 4.47E+02 <1.00E-06 5.17E+01 <1.00E-06 6.57E+00 5.17E+00 <1.00E-06 7.76E+02 3.59E-03 9.62E-03                                                | <1.00E-06 1.03E+02 6.25E+01 2.55E+02 <1.00E-06 3.76E+01 1.27E+01 1.15E-04 <1.00E-06 <1.00E-06 4.71E+02  9.25E-03 2.88E-02                       | <1.00E-06 1.08E+02 4.30E+01 2.10E+02 <1.00E-06 3.72E+01 <1.00E-06 3.51E-04 <1.00E-06 3.98E+02                |
|                                          | 7.30E+01<br>2.99E+01<br>1.58E+02<br><1.00E-06<br>3.67E+01<br><1.00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                       | 1.80E+02<br>8.60E+01<br>4.47E+02<br><1.00E-06<br>5.17E+01<br><1.00E-06<br>6.57E+00<br>5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                         | 1.03E+02<br>6.25E+01<br>2.55E+02<br><1.00E-06<br>3.76E+01<br>1.27E+01<br>1.15E-04<br><1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02 | 1.08E+02<br>4.30E+01<br>2.10E+02<br><1.00E-06<br>3.72E+01<br><1.00E-06<br>3.51E-04<br><1.00E-06<br>3.98E+02  |
|                                          | 2.99E+01<br>1.58E+02<br><1.00E-06<br>3.67E+01<br><1.00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                   | 8.60E+01<br>4.47E+02<br><1.00E-06<br>5.17E+01<br><1.00E-06<br>6.57E+00<br>5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                     | 6.25E+01<br>2.55E+02<br><1.00E-06<br>3.76E+01<br>1.27E+01<br>1.15E-04<br><1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02             | 4.30E+01<br>2.10E+02<br><1.00E-06<br>3.72E+01<br><1.00E-06<br>3.51E-04<br><1.00E-06<br><1.00E-06<br>3.98E+02 |
|                                          | 1.58E+02<br><1.00E-06<br>3.67E+01<br><1.00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                               | 4.47E+02<br><1.00E-06<br>5.17E+01<br><1.00E-06<br>6.57E+00<br>5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                                 | 2.55E+02<br><1.00E-06<br>3.76E+01<br>1.27E+01<br>1.15E-04<br><1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02                         | 2.10E+02<br><1.00E-06<br>3.72E+01<br><1.00E-06<br>3.51E-04<br><1.00E-06<br><1.00E-06<br>3.98E+02             |
| Si S | <1.00E-06<br>3.67E+01<br><1.00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                           | <1.00E-06 5.17E+01 <1.00E-06 6.57E+00 5.17E+00 <1.00E-06 7.76E+02 3.59E-03 9.62E-03                                                                                     | <1.00E-06 3.76E+01 1.27E+01 1.15E-04 <1.00E-06 <1.00E-06 4.71E+02  9.25E-03 2.88E-02                                                            | <1.00E-06 3.72E+01 <1.00E-06 3.51E-04 <1.00E-06 <1.00E-06 3.98E+02                                           |
|                                          | 3.67E+01<br><1.00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                                        | 5.17E+01<br><1.00E-06<br>6.57E+00<br>5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                                                          | 3.76E+01<br>1.27E+01<br>1.15E-04<br><1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02                                                  | 3.72E+01<br><1.00E-06<br>3.51E-04<br><1.00E-06<br><1.00E-06<br>3.98E+02                                      |
|                                          | <00E-06<br>4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                                                      | <1.00E-06<br>6.57E+00<br>5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                                                                      | 1.27E+01<br>1.15E-04<br><1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02                                                              | <1.00E-06 3.51E-04 <1.00E-06 <1.00E-06 3.98E+02  8.17E-03                                                    |
|                                          | 4.39E+01<br>2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                                                                 | 6.57E+00<br>5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                                                                                   | 1.15E-04<br><1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02                                                                          | 3.51E-04<br><1.00E-06<br><1.00E-06<br>3.98E+02<br>8.17E-03                                                   |
| Si S | 2.31E+01<br><1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                                                                             | 5.17E+00<br><1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                                                                                               | <1.00E-06<br><1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02                                                                                      | <1.00E-06<br><1.00E-06<br>3.98E+02<br>8.17E-03                                                               |
|                                          | <1.00E-06<br>3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                                                                                         | <1.00E-06<br>7.76E+02<br>3.59E-03<br>9.62E-03                                                                                                                           | <1.00E-06<br>4.71E+02<br>9.25E-03<br>2.88E-02                                                                                                   | <1.00E-06<br>3.98E+02<br>8.17E-03                                                                            |
| Ci Ci Ci                                 | 3.65E+02<br>1.99E-03<br>6.32E-03<br>7.96E-03                                                                                                                                                      | 7.76E+02<br>3.59E-03<br>9.62E-03                                                                                                                                        | 4.71E+02<br>9.25E-03<br>2.88E-02                                                                                                                | 3.98E+02<br>8.17E-03                                                                                         |
| Ci<br>Ci<br>Ci                           | 6.32E-03<br>7.96E-03                                                                                                                                                                              | 9.62E-03                                                                                                                                                                | 2.88E-02                                                                                                                                        |                                                                                                              |
| Ci<br>Ci<br>Ci                           | 6.32E-03<br>7.96E-03                                                                                                                                                                              | 9.62E-03                                                                                                                                                                | 2.88E-02                                                                                                                                        |                                                                                                              |
| Ci<br>Ci<br>Ci                           | 6.32E-03<br>7.96E-03                                                                                                                                                                              | 9.62E-03                                                                                                                                                                | 2.88E-02                                                                                                                                        |                                                                                                              |
| Ci<br>Ci<br>Ci                           | 7.96E-03                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                              |
| Ci<br>Ci                                 |                                                                                                                                                                                                   | 9.64E-03                                                                                                                                                                | 0.700.00                                                                                                                                        | 7.81E-03                                                                                                     |
| Ci                                       | <1.00E-11                                                                                                                                                                                         | 11 000 11                                                                                                                                                               | 2.63E-02                                                                                                                                        | 1.85E-02                                                                                                     |
|                                          | 1.000.03                                                                                                                                                                                          | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
|                                          | 1.80E-03                                                                                                                                                                                          | 7.38E-03                                                                                                                                                                | 3.35E-02                                                                                                                                        | 1.60E-02                                                                                                     |
| i                                        | 1.81E-02                                                                                                                                                                                          | 3.02E-02                                                                                                                                                                | 9.79E-02                                                                                                                                        | 5.05E-02                                                                                                     |
| `i                                       | 1.18E-02                                                                                                                                                                                          | 2.06E-02                                                                                                                                                                | 6.91E-02                                                                                                                                        | 4.27E-02                                                                                                     |
|                                          |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                              |
| i                                        | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| Ci                                       | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | 2.60E-05                                                                                                     |
| i i                                      | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| Ci 📗                                     | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | 6.62E-03                                                                                                                                        | <1.00E-11                                                                                                    |
| i                                        | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| Ci                                       | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| i                                        | 2.04E-04                                                                                                                                                                                          | 2.78E-04                                                                                                                                                                | 2.42E-04                                                                                                                                        | 2.19E-04                                                                                                     |
| i                                        | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| Ci                                       | 1.20E-04                                                                                                                                                                                          | 1.86E-04                                                                                                                                                                | 2.15E-04                                                                                                                                        | 1.73E-04                                                                                                     |
| i                                        | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| i                                        | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| i                                        | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
|                                          | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| i                                        |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                              |
|                                          | <1.00E-11                                                                                                                                                                                         | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| i                                        |                                                                                                                                                                                                   | <1.00E-11<br><1.00E-11                                                                                                                                                  | <1.00E-11<br><1.00E-11                                                                                                                          | <1.00E-11<br><1.00E-11                                                                                       |
| Ci<br>Ci                                 | <1.00E-11                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                              |
| Ci<br>Ci<br>Ci                           | <1.00E-11<br><1.00E-11                                                                                                                                                                            | <1.00E-11                                                                                                                                                               | <1.00E-11                                                                                                                                       | <1.00E-11                                                                                                    |
| Ci Ci                                    | <1.00E-11<br><1.00E-11<br><1.00E-11                                                                                                                                                               | <1.00E-11<br><1.00E-11                                                                                                                                                  | <1.00E-11<br><1.00E-11                                                                                                                          | <1.00E-11<br><1.00E-11                                                                                       |
| Ci<br>Ci<br>Ci<br>Ci                     | <1.00E-11<br><1.00E-11<br><1.00E-11<br><1.00E-11                                                                                                                                                  | <1.00E-11<br><1.00E-11<br><1.00E-11                                                                                                                                     | <1.00E-11<br><1.00E-11<br><1.00E-11                                                                                                             | <1.00E-11<br><1.00E-11<br>4.55E-05                                                                           |
|                                          |                                                                                                                                                                                                   | i <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <2.04E-04 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 ii <1.00E-11 | i         <1.00E-11                                                                                                                             | ii         <1.00E-11                                                                                         |

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

# LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) LIQUID RELEASES

### UNIT 1

### SUMMATION OF ALL LIQUID RELEASES

|       |         |         |         |         | Estimated     |
|-------|---------|---------|---------|---------|---------------|
| Units | 1st Qtr | 2nd Qtr | 3rd Qtr | 4th Qtr | Total Error % |

### A. Fission and Activation Products

| 1. Total Activity Released        | Ci     | <lld< th=""><th><lld< th=""><th><lld< th=""><th>5.08E-03</th><th>10%</th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th>5.08E-03</th><th>10%</th></lld<></th></lld<> | <lld< th=""><th>5.08E-03</th><th>10%</th></lld<> | 5.08E-03 | 10% |
|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|----------|-----|
| 2. Average Concentration Released | uCi/ml | <lld< td=""><td><lld< td=""><td><lld< td=""><td>8.02E-08</td><td></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td>8.02E-08</td><td></td></lld<></td></lld<>    | <lld< td=""><td>8.02E-08</td><td></td></lld<>    | 8.02E-08 |     |
| 3. Percent of Applicable Limit    | %      | *                                                                                                        | *                                                                            | *                                                | *        |     |

### B. Tritium

| 1. Total Activity Released        | Ci     | <lld< th=""><th><lld< th=""><th><lld< th=""><th>1.19E-01</th><th>12%</th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th>1.19E-01</th><th>12%</th></lld<></th></lld<> | <lld< th=""><th>1.19E-01</th><th>12%</th></lld<> | 1.19E-01 | 12% |
|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|----------|-----|
| 2. Average Concentration Released | uCi/ml | <lld< td=""><td><lld< td=""><td><lld< td=""><td>1.88E-06</td><td></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td>1.88E-06</td><td></td></lld<></td></lld<>    | <lld< td=""><td>1.88E-06</td><td></td></lld<>    | 1.88E-06 |     |
| 3. Percent of Applicable Limit    | %      | *                                                                                                        | *                                                                            | *                                                | *        |     |

### C. Dissolved Noble Gases

| 1. Total Activity Released        | Ci     | <lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<> | <lld< th=""><th>N/A</th></lld<> | N/A |
|-----------------------------------|--------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-----|
| 2. Average Concentration Released | uCi/ml | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>    | <lld< td=""><td></td></lld<>    |     |
| 3. Percent of Applicable Limit    | %      | *                                                                                                                   | *                                                                                       | *                                                           | *                               |     |

### D. Gross Alpha

| 1. Total Activity Released (estimate) | Ci     | <1.00E-07 | <1.00E-07 | <1.00E-07 | <1.00E-07 | N/A |
|---------------------------------------|--------|-----------|-----------|-----------|-----------|-----|
| 2. Average Concentration Released     | uCi/ml | <1.00E-07 | <1.00E-07 | <1.00E-07 | <1.00E-07 |     |
| 3. Percent of Applicable Limit        | %      | *         | *         | *         | *         |     |

| E. Volume of Liquid Waste to Discharge | liters | 0.00E+00 | 0.00E+00 | 0.00E+00 | 8.63E+04 | 2% |
|----------------------------------------|--------|----------|----------|----------|----------|----|
|                                        |        |          |          |          |          |    |
| F. Volume of Dilution Water            | liters | 0.00E+00 | 0.00E+00 | 0.00E+00 | 6.32E+07 | 5% |

<sup>&</sup>quot;\*" This information is contained in the Radiological Impact on Man section of the report.

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

# LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) LIQUID RELEASES UNIT 1 BATCH MODE

| Nuclides From Batch Releases | Units | 1st Qtr | 2nd Qtr                                          | 3rd Qtr  | 4th Qtr             |
|------------------------------|-------|---------|--------------------------------------------------|----------|---------------------|
|                              |       |         |                                                  |          |                     |
| H-3                          | Ci    |         |                                                  |          | 1.19E-01            |
| Cr-51                        | Ci    |         |                                                  |          | 8.40E-04            |
| Mn-54                        | Ci    |         |                                                  |          | 8.60E-04            |
| Fe-55 (Estimate)             | Ci    |         |                                                  |          | 5.04E-04            |
| Co-58                        | Ci    | †       |                                                  |          | 5.88E-05            |
| Fe-59                        | Ci    |         | T                                                |          | 3.63E-04            |
| Co-60                        | Ci    |         | <u> </u>                                         |          | 1.26E-03            |
| Zn-65                        | Ci    |         |                                                  |          | 3.24E-04            |
| Sr-89 (Estimate)             | Ci    |         |                                                  |          | 1.20E-07            |
| Sr-90 (Estimate)             | Ci    |         | 1                                                |          | 1.03E-07            |
| Nb-95                        | Ci    |         |                                                  |          | 1.12E-05            |
| Zr-95                        | Ci    |         |                                                  |          | 1.08E-05            |
| Mo-99                        | Ci    |         |                                                  |          | <5.00E-07           |
| Tc-99m                       | Ci    |         |                                                  |          | <5.00E-07           |
| Ag-110m                      | Ci    | +       |                                                  |          | 1.17E-05            |
| Sb-122                       | Ci    | †       |                                                  |          | 3.91E-05            |
| Sb-124                       | Ci    |         |                                                  |          | 1.00E-05            |
| I-131                        | Ci    |         |                                                  |          | <1.00E-06           |
| Cs-134                       | Ci    |         | <del>                                     </del> |          | 2.14E-04            |
| Cs-137                       | Ci    |         | 1                                                | <u> </u> | 5.46E-04            |
| Ba\La-140                    | Ci    |         |                                                  |          | 4.94E-06            |
| Ce-141                       | Ci    |         |                                                  |          | <5.00E-07           |
| Ce-144                       | Ci    | 1       |                                                  |          | 1.80E-05            |
| W-187                        | Ci    |         |                                                  |          | <5.00E-07           |
| TOTAL                        | Ci    | None    | None                                             | None     | 1.24E-01            |
|                              |       |         |                                                  | <u></u>  |                     |
| Xe-131m                      | Ci    |         |                                                  |          | <1.00E-05           |
| Xe-133                       | Ci    |         |                                                  |          | <1.00E-05           |
| Xe-133m                      | Ci    |         |                                                  |          | <1.00E-05           |
| Xe-135                       | Ci    |         |                                                  |          | <1.00E-05           |
| Xe-135m                      | Ci    | +       |                                                  | †        | <1.00E-05           |
| TOTAL                        | Ci    | None    | None                                             | None     | <lld< td=""></lld<> |

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

# LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) LIQUID RELEASES UNIT 1

### CONTINUOUS MODE

| Nuclides From Batch Releases | Units | 1st Qtr                                                                                                 | 2nd Qtr                                                                     | 3rd Qtr                                         | 4th Qtr             |
|------------------------------|-------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
|                              |       |                                                                                                         |                                                                             |                                                 |                     |
| H-3                          | Ci    | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Cr-51                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Mn-54                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Fe-55 (Estimate)             | Ci    | <1.00E-06                                                                                               | <1.00E-06                                                                   | <1.00E-06                                       | <1.00E-06           |
| Co-58                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Fe-59                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Co-60                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Zn-65                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Sr-89 (Estimate)             | Ci    | <5.00E-08                                                                                               | <5.00E-08                                                                   | <5.00E-08                                       | <5.00E-08           |
| Sr-90 (Estimate)             | Ci    | <5.00E-08                                                                                               | <5.00E-08                                                                   | <5.00E-08                                       | <5.00E-08           |
| Nb-95                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Zr-95                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Mo-99                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Tc-99m                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ag-110m                      | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Sb-122                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Sb-124                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| I-131                        | Ci    | <1.00E-06                                                                                               | <1.00E-06                                                                   | <1.00E-06                                       | <1.00E-06           |
| Cs-134                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Cs-137                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ba\La-140                    | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ce-141                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ce-144                       | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| W-187                        | Ci    | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| TOTAL                        | Ci    | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""></lld<></td></lld<> | <lld< td=""></lld<> |
|                              |       |                                                                                                         |                                                                             |                                                 |                     |
| Xe-131m                      | Ci    | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-133                       | Ci    | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-133m                      | Ci    | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-135                       | Ci    | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-135m                      | Ci    | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| TOTAL                        | Ci    | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""></lld<></td></lld<> | <lld< td=""></lld<> |

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

# LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) LIQUID RELEASES

### UNIT 2

### SUMMATION OF ALL LIQUID RELEASES

|       |         |         |         |         | Estimated     |
|-------|---------|---------|---------|---------|---------------|
| Units | 1st Qtr | 2nd Qtr | 3rd Qtr | 4th Qtr | Total Error % |

### A. Fission and Activation Products

| 1. Total Activity Released        | Ci     | <lld< th=""><th><lld< th=""><th><lld< th=""><th>5.08E-03</th><th>10%</th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th>5.08E-03</th><th>10%</th></lld<></th></lld<> | <lld< th=""><th>5.08E-03</th><th>10%</th></lld<> | 5.08E-03 | 10% |
|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|----------|-----|
| 2. Average Concentration Released | uCi/ml | <lld< td=""><td><lld< td=""><td><lld< td=""><td>8.02E-08</td><td></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td>8.02E-08</td><td></td></lld<></td></lld<>    | <lld< td=""><td>8.02E-08</td><td></td></lld<>    | 8.02E-08 |     |
| 3. Percent of Applicable Limit    | %      | *                                                                                                        | *                                                                            | *                                                | *        |     |

### B. Tritium

| 1. Total Activity Released        | Ci     | <lld< th=""><th><lld< th=""><th><lld< th=""><th>1.19E-01</th><th>12%</th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th>1.19E-01</th><th>12%</th></lld<></th></lld<> | <lld< th=""><th>1.19E-01</th><th>12%</th></lld<> | 1.19E-01 | 12% |
|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|----------|-----|
| 2. Average Concentration Released | uCi/ml | <lld< td=""><td><lld< td=""><td><lld< td=""><td>1.88E-06</td><td></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td>1.88E-06</td><td></td></lld<></td></lld<>    | <lld< td=""><td>1.88E-06</td><td></td></lld<>    | 1.88E-06 |     |
| 3. Percent of Applicable Limit    | %      | *                                                                                                        | *                                                                            | *                                                | *        |     |

### C. Dissolved Noble Gases

| 1. Total Activity Released        | Ci     | <lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<> | <lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<> | <lld< th=""><th>N/A</th></lld<> | N/A |
|-----------------------------------|--------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-----|
| 2. Average Concentration Released | uCi/ml | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>    | <lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>    | <lld< td=""><td></td></lld<>    |     |
| 3. Percent of Applicable Limit    | %      | *                                                                                                                   | *                                                                                       | *                                                           | *                               |     |

### D. Gross Alpha

| 1. Total Activity Released (estimate) | Ci     | <1.00E-07 | <1.00E-07 | <1.00E-07 | <1.00E-07 | N/A |
|---------------------------------------|--------|-----------|-----------|-----------|-----------|-----|
| 2. Average Concentration Released     | uCi/ml | <1.00E-07 | <1.00E-07 | <1.00E-07 | <1.00E-07 |     |
| 3. Percent of Applicable Limit        | %      | *         | *         | *         | *         |     |

| E. Volume of Liquid Waste to Discharge | liters | 0.00E+00 | 0.00E+00 | 0.00E+00 | 8.63E+04 | 2% |
|----------------------------------------|--------|----------|----------|----------|----------|----|
|                                        |        |          |          |          |          |    |
| F. Volume of Dilution Water            | liters | 0.00E+00 | 0.00E+00 | 0.00E+00 | 6.32E+07 | 5% |

<sup>&</sup>quot;\*" This information is contained in the Radiological Impact on Man section of the report.

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

# LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) LIQUID RELEASES UNIT 2 BATCH MODE

| Nuclides From Batch Releases | Units | 1st Qtr  | 2nd Qtr                               | 3rd Qtr     | 4th Qtr             |
|------------------------------|-------|----------|---------------------------------------|-------------|---------------------|
| H-3                          | Ci    | Γ .      | · · · · · · · · · · · · · · · · · · · | <del></del> | 1.19E-01            |
| Cr-51                        | Ci    |          | ļ                                     |             | 8.40E-04            |
| Mn-54                        | Ci    |          | <u> </u>                              |             | 8.60E-04            |
|                              | Ci    |          | <del> </del>                          |             | 5.04E-04            |
| Fe-55 (Estimate)<br>Co-58    | Ci    |          |                                       |             | 5.88E-05            |
| Fe-59                        | Ci    |          |                                       |             | 3.63E-04            |
|                              | Ci    |          |                                       |             | 1.26E-03            |
| Co-60                        |       |          | ļ                                     |             | 3.24E-04            |
| Zn-65                        | Ci    |          |                                       |             | L                   |
| Sr-89 (Estimate)             | Ci    | <u></u>  |                                       |             | 1.20E-07            |
| Sr-90 (Estimate)             | Ci    |          |                                       |             | 1.03E-07            |
| Nb-95                        | Ci    | <u> </u> |                                       |             | 1.12E-05            |
| Zr-95                        | Ci    |          | <u> </u>                              |             | 1.08E-05            |
| Mo-99                        | Ci    |          |                                       |             | <5.00E-07           |
| Tc-99m                       | Ci    |          |                                       |             | <5.00E-07           |
| Ag-110m                      | Ci    |          |                                       |             | 1.17E-05            |
| Sb-122                       | Ci    |          |                                       |             | 3.91E-05            |
| Sb-124                       | Ci    |          | -                                     |             | 1.00E-05            |
| I-131                        | Ci    |          |                                       |             | <1.00E-06           |
| Cs-134                       | Ci    |          |                                       |             | 2.14E-04            |
| Cs-137                       | Ci    |          |                                       |             | 5.46E-04            |
| Ba\La-140                    | Ci    |          | 1                                     | 1           | 4.94E-06            |
| Ce-141                       | Ci    |          |                                       |             | <5.00E-07           |
| Ce-144                       | Ci    |          |                                       |             | 1.80E-05            |
| W-187                        | Ci    |          |                                       |             | <5.00E-07           |
| TOTAL                        | Ci    | None     | None                                  | None        | 1.24E-01            |
|                              |       |          |                                       |             |                     |
| Xe-131m                      | Ci    | 1        |                                       | <u> </u>    | <1.00E-05           |
| Xe-133                       | Ci    |          |                                       |             | <1.00E-05           |
| Xe-133m                      | Ci    |          |                                       |             | <1.00E-05           |
| Xe-135                       | Ci    |          |                                       |             | <1.00E-05           |
| Xe-135m                      | Ci    | 1        |                                       | -           | <1.00E-05           |
| TOTAL                        | Ci    | None     | None                                  | None        | <lld< td=""></lld<> |

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

# LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) LIQUID RELEASES UNIT 2 CONTINUOUS MODE

| Nuclides From Batch Releases | Units  | 1st Qtr                                                                                                 | 2nd Qtr                                                                     | 3rd Qtr                                         | 4th Qtr             |
|------------------------------|--------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
|                              |        |                                                                                                         |                                                                             |                                                 |                     |
| H-3                          | Ci     | <1.00E-05                                                                                               | l .                                                                         | <1.00E-05                                       | l                   |
| Cr-51                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Mn-54                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Fe-55 (Estimate)             | Ci     | <1.00E-06                                                                                               | <1.00E-06                                                                   | <1.00E-06                                       | <1.00E-06           |
| Co-58                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Fe-59                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Co-60                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Zn-65                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Sr-89 (Estimate)             | Ci     | <5.00E-08                                                                                               | <5.00E-08                                                                   | <5.00E-08                                       | <5.00E-08           |
| Sr-90 (Estimate)             | Ci     | <5.00E-08                                                                                               | <5.00E-08                                                                   | <5.00E-08                                       | <5.00E-08           |
| Nb-95                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Zr-95                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Mo-99                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Tc-99m                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ag-110m                      | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Sb-122                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Sb-124                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| I-131                        | Ci     | <1.00E-06                                                                                               | <1.00E-06                                                                   | <1.00E-06                                       | <1.00E-06           |
| Cs-134                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Cs-137                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ba\La-140                    | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ce-141                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| Ce-144                       | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| W-187                        | Ci     | <5.00E-07                                                                                               | <5.00E-07                                                                   | <5.00E-07                                       | <5.00E-07           |
| TOTAL                        | Ci     | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""></lld<></td></lld<> | <lld< td=""></lld<> |
|                              |        | <u> </u>                                                                                                |                                                                             |                                                 |                     |
| N. 101                       | - 1 6: | -1 00F 05                                                                                               | -1 00F 05                                                                   | L <1.00E.05                                     | <1.00E.05           |
| Xe-131m                      | Ci     | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-133                       | Ci     | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-133m                      | Ci     | <1.00E-05                                                                                               |                                                                             | <1.00E-05                                       | <1.00E-05           |
| Xe-135                       | Ci     | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
| Xe-135m                      | Ci     | <1.00E-05                                                                                               | <1.00E-05                                                                   | <1.00E-05                                       | <1.00E-05           |
|                              |        |                                                                                                         |                                                                             |                                                 |                     |

Ci

<LLD

<LLD

<LLD

<LLD

TOTAL

<sup>&</sup>quot;<" indicates activity of sample is less than LLD given in uCi/ml

SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FIRST QUARTER

### A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL

1. Spent resins, filter sludges, evaporator bottoms, etc.

| a. | Quantity shipped cu.m.                        | 7.28E+01                         |
|----|-----------------------------------------------|----------------------------------|
| b. | Total activity Ci                             | 6.62E+02                         |
| c. | Major nuclides (estimate %)                   |                                  |
|    | Mn-54 %<br>Fe-55 %<br>Ni-63 %<br>Co-60 %      | 1.41<br>78.64<br>0.29<br>19.45   |
| d. | Container type                                | LSA (12) Type B (2)              |
| e. | Container volume cu.m.                        | 4.84E+00<br>3.41E+00<br>5.83E+00 |
| f. | Solidification agent                          | None                             |
|    | ompressible waste,<br>ninated equipment, etc. |                                  |
| a. | Quantity shipped cu.m.                        | 1.86E+02                         |
| b. | Total activity Ci                             | 1.15E+01                         |
| c. | Major nuclides (estimate %)                   |                                  |
|    | Fe-59 %<br>Mn-54 %<br>Fe-55 %<br>Co-60 %      | 5.21<br>10.37<br>65.14<br>16.36  |
| d. | Container type                                | LSA                              |
| e. | Container volume cu.m.                        | 4.84E+00<br>3.62E+01<br>7.25E+01 |

2.

## EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FIRST QUARTER

| 3. | Other     |                             |          |
|----|-----------|-----------------------------|----------|
|    | a.        | Quantity shipped cu.m.      | 0.00E+00 |
|    | b.        | Total activity Ci           | 0.00E+00 |
|    | c.        | Major nuclides (estimate %) | N/A      |
|    | d.        | Container type              | N/A      |
|    | e.        | Container volume cu.m.      | N/A      |
| 4. | Irradiate | ed Components               |          |
|    | a.        | Quantity shipped cu.m       | 0.00E+00 |
|    | b.        | Total activity Ci           | 0.00E+00 |
|    | c.        | Major nuclides (estimate %) | N/A      |
|    | d.        | Number of shipments         | 0        |
|    | e.        | Mode of Transportation      | N/A      |
|    | f.        | Destination                 | N/A      |
| 5. | Solid W   | 'aste Disposition           |          |

|                    | Number of Shipments | <b>Transportation Mode</b> | Destination         |
|--------------------|---------------------|----------------------------|---------------------|
|                    |                     |                            |                     |
|                    | 6                   | Truck                      | CNSI, Barnwell, SC  |
|                    | 8                   | Truck                      | ATG, Oak Ridge, TN  |
|                    | 1                   | Truck                      | ATG, Richland, WA   |
|                    | 1                   | Truck                      | GTS, Oak Ridge, TN  |
|                    | 2                   | Truck                      | AERC, Oak Ridge, TN |
| TOTAL THIS QUARTER | 18                  |                            |                     |

Estimated total error % for spent resins, filter sludges, evaporator bottoms, etc. (Jan-Dec)

13%

Estimated total error % for dry compressible waste, contaminated equipment, etc. (Jan-Dec)

15%

Estimated total error % for irradiated components (Jan-Dec)

### B. IRRADIATED FUEL SHIPMENTS

None

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS SECOND QUARTER

### A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL

1. Spent resins, filter sludges, evaporator bottoms, etc.

| Cvapo | rator bottoms, etc.                        |                                  |                  |                                  |
|-------|--------------------------------------------|----------------------------------|------------------|----------------------------------|
| a.    | Quantity shipped                           | cu.m.                            |                  | 1.11E+02                         |
| b.    | Total activity                             | Ci                               |                  | 3.76E+02                         |
| c.    | Major nuclides (estir                      | nate %)                          |                  |                                  |
|       |                                            | N-63<br>Fe-55<br>Zn-65<br>Co-60  | %<br>%<br>%<br>% | 0.59<br>78.90<br>20.17<br>0.26   |
| d.    | Container type                             |                                  |                  | LSA (17)<br>Type B (1)           |
| e.    | Container volume                           | e cu.m.                          |                  | 5.83E+00<br>4.84E+00<br>3.41E+00 |
| f.    | Solidification age                         | ent                              |                  | None                             |
|       | ompressible waste,<br>minated equipment, e | etc.                             |                  |                                  |
| a.    | Quantity shipped                           | cu.m.                            |                  | 1.45E+02                         |
| b.    | Total activity                             | Ci                               |                  | 4.73E-02                         |
| c.    | Major nuclides (e                          | estimate %)                      |                  |                                  |
|       |                                            | Fe-59<br>Mn-54<br>Fe-55<br>Co-60 | %<br>%<br>%<br>% | 2.50<br>8.79<br>68.10<br>17.45   |
| d.    | Container type                             |                                  |                  | LSA (2)                          |
| e.    | Container volume                           | e cu.m.                          |                  | 7.25E+01                         |
|       |                                            |                                  |                  |                                  |

2.

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS SECOND QUARTER

| 3.    | Other    |                      |                 |              |                          |                     |     |
|-------|----------|----------------------|-----------------|--------------|--------------------------|---------------------|-----|
|       | a.       | Quantity shipped     | l cu.m.         |              | 0.00E+00                 |                     |     |
|       | b.       | Total activity       | Ci              |              | 0.00E+00                 |                     |     |
|       | c.       | Major nuclides (     | estimate %)     |              | N/A                      |                     |     |
|       | d.       | Container type       |                 |              | N/A                      |                     |     |
|       | e.       | Container volum      | e cu.m.         |              | N/A                      |                     |     |
| 4.    | Irradiat | ed Components        |                 |              |                          |                     |     |
|       | a.       | Quantity shipped     | d cu.m          |              | 3.27E+00                 |                     |     |
|       | b.       | Total activity       | Ci              |              | 4.34E+04                 |                     |     |
|       | c.       | Major nuclides       | (estimate %)    |              |                          |                     |     |
|       |          |                      | Mn-54           | %            | 1.13                     |                     |     |
|       |          |                      | Fe-55           | %            | 44.16                    |                     |     |
|       |          |                      | Co-60           | %            | 51.13                    |                     |     |
|       |          |                      | Ni-63           | <b>%</b>     | 3.63                     |                     |     |
|       | d.       | Number of shipr      | ments           |              | 2                        |                     |     |
|       | e.       | Mode of Transpo      | ortation        |              | Truck                    |                     |     |
|       | f.       | Destination          |                 |              | Barnwell                 |                     |     |
| 5.    | Solid V  | Vaste Disposition    |                 |              |                          |                     |     |
|       |          | <u>Nu</u>            | mber of Shipr   | <u>ments</u> | Transportation Mode      | <u>Destination</u>  |     |
|       |          |                      | 7               |              | Truck                    | CNSI, Barnwell, SC  |     |
|       |          |                      | 2               |              | Truck                    | ATG, Oak Ridge, TN  |     |
|       |          |                      | 11              |              | Truck                    | ATG, Richland, WA   |     |
|       |          |                      | 0               |              | Truck                    | GTS, Oak Ridge, TN  |     |
|       |          |                      | 2               |              | Truck                    | AERC, Oak Ridge, TN |     |
| TOTAL | THIS (   | QUARTER              | 22              |              |                          | , 5,                |     |
|       | Estima   | ted total error % fo | r spent resins, | filter sl    | udges, evaporator botton | ns, etc. (Jan-Dec)  | 13% |

Estimated total error % for dry compressible waste, contaminated equipment, etc. (Jan-Dec)

Estimated total error % for irradiated components (Jan-Dec)

15%

15%

### B. IRRADIATED FUEL SHIPMENTS

None

## EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS THIRD QUARTER

### A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL

1. Spent resins, filter sludges, evaporator bottoms, etc.

| a. | Quantity shipped                       | cu.m.      |    | 3.40E+01                         |
|----|----------------------------------------|------------|----|----------------------------------|
| b. | Total activity                         | Ci         |    | 2.23E+01                         |
| c. | Major nuclides (e                      | stimate %) |    |                                  |
|    |                                        | Mn-54      | %  | 9.32                             |
|    |                                        | Fe-55      | %  | 23.79                            |
|    |                                        | Cs-137     | %  | 2.68                             |
|    |                                        | Co-60      | %  | 58.94                            |
|    |                                        | C0-00      | 70 | 30.74                            |
| d. | Container type                         |            |    | LSA (4)                          |
| e. | Container volume                       | cu.m.      |    | 5.83E+00                         |
| f. | Solidification age                     | nt         |    | None                             |
|    | pressible waste,<br>nated equipment, e | tc.        |    |                                  |
| a. | Quantity shipped                       | cu.m.      |    | 2.66E+02                         |
| b. | Total activity                         | Ci         |    | 1.45E+01                         |
| c. | Major nuclides (e                      | stimate %) |    |                                  |
|    |                                        | Ni-63      | %  | 0.26                             |
|    |                                        | Mn-54      | %  | 1.59                             |
|    |                                        | Fe-55      | %  | 77.39                            |
|    |                                        | Co-60      | %  | 19.85                            |
| d. | Container type                         |            |    | LSA (8)<br>LQ (1)                |
| e. | Container volume                       | e cu.m.    |    | 3.62E+01<br>7.25E+01<br>2.38E+00 |

2.

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS THIRD QUARTER

| 3 | Other |
|---|-------|
|   |       |

4.

| a.       | Quantity shipped cu.m.      | 0.00E+00 |
|----------|-----------------------------|----------|
| b.       | Total activity Ci           | 0.00E+00 |
| c.       | Major nuclides (estimate %) | N/A      |
| d.       | Container type              | N/A      |
| e.       | Container volume cu.m.      | N/A      |
| Irradiat | ed Components               |          |
| a.       | Number of shipments         | 0        |
| b.       | Mode of Transportation      | N/A      |
| c.       | Destination                 | N/A      |

Estimated total error % for irradiated components (Jan-Dec)

### 5. Solid Waste Disposition

|                    | Number of Shipments | Transportation Mode | <u>Destination</u>  |
|--------------------|---------------------|---------------------|---------------------|
|                    | 2                   | Truck               | CNSI, Barnwell, SC  |
|                    | 0                   | Truck               | ATG, Oak Ridge, TN  |
|                    | 6                   | Truck               | ATG, Richland, WA   |
|                    | 1                   | Truck               | GTS, Oak Ridge, TN  |
|                    | 2                   | Truck               | AERC, Oak Ridge, TN |
|                    | 2                   | Truck               | NSSF, Barnwell, SC  |
| TOTAL THIS QUARTER | 13                  |                     |                     |

Estimated total error % for spent resins, filter sludges, evaporator bottoms, etc. (Jan-Dec) 13%

Estimated total error % for dry compressible waste, contaminated equipment, etc. (Jan-Dec) 15%

15%

### B. IRRADIATED FUEL SHIPMENTS

None

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FOURTH QUARTER

### A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL

1. Spent resins, filter sludges, evaporator bottoms, etc.

| a.             | Quantity shippe                                                                                     | d                                                    | cu.m.  | 1.08E+02                                                           |
|----------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|--------------------------------------------------------------------|
| b.             | Total activity                                                                                      |                                                      | Ci     | 7.54E+02                                                           |
| c.             | Major nuclides                                                                                      | (estimate %)                                         |        |                                                                    |
|                |                                                                                                     | Mn-54                                                | %      | 0.78                                                               |
|                |                                                                                                     | Fe-55                                                | %      | 76.56                                                              |
|                |                                                                                                     | Cs-137                                               | %      | 1.25                                                               |
|                |                                                                                                     | Co-60                                                | %      | 20.29                                                              |
| d.             | Container type                                                                                      |                                                      |        | LSA (15)<br>Type B (3                                              |
| e.             | Container volun                                                                                     | ne cu.m.                                             |        | 3.41E+00<br>5.83E+00<br>2.36E+00<br>4.84E+00                       |
| f.             | Solidification ag                                                                                   | rant                                                 |        | None                                                               |
|                | Sonameation ag                                                                                      | zem                                                  |        | None                                                               |
|                | ompressible waste,<br>minated equipment,                                                            |                                                      |        | None                                                               |
|                | ompressible waste,                                                                                  | etc.                                                 |        | 5.85E+02                                                           |
| conta          | ompressible waste,<br>minated equipment,                                                            | etc.                                                 |        |                                                                    |
| conta<br>a.    | ompressible waste,<br>minated equipment,<br>Quantity shippe                                         | etc.<br>d cu.m.<br>Ci                                |        | 5.85E+02                                                           |
| a. b.          | ompressible waste,<br>minated equipment,<br>Quantity shippe<br>Total activity                       | etc. d cu.m. Ci (estimate %)                         | %      | 5.85E+02<br>3.14E+00                                               |
| a. b.          | ompressible waste,<br>minated equipment,<br>Quantity shippe<br>Total activity                       | etc.<br>d cu.m.<br>Ci                                | %<br>% | 5.85E+02                                                           |
| a. b.          | ompressible waste,<br>minated equipment,<br>Quantity shippe<br>Total activity                       | etc. d cu.m. Ci (estimate %) Fe-59                   |        | 5.85E+02<br>3.14E+00<br>1.89                                       |
| a. b.          | ompressible waste,<br>minated equipment,<br>Quantity shippe<br>Total activity                       | etc. d cu.m. Ci (estimate %) Fe-59 Mn-54             | %      | 5.85E+02<br>3.14E+00<br>1.89<br>8.71                               |
| a. b.          | ompressible waste,<br>minated equipment,<br>Quantity shippe<br>Total activity                       | etc. d cu.m. Ci (estimate %) Fe-59 Mn-54 Fe-55       | %<br>% | 5.85E+02<br>3.14E+00<br>1.89<br>8.71<br>69.20                      |
| a. b. c.       | ompressible waste,<br>minated equipment,<br>Quantity shippe<br>Total activity<br>Major nuclides     | etc. d cu.m. Ci (estimate %) Fe-59 Mn-54 Fe-55 Co-60 | %<br>% | 5.85E+02<br>3.14E+00<br>1.89<br>8.71<br>69.20<br>17.90             |
| conta a. b. c. | ompressible waste, minated equipment, Quantity shippe Total activity Major nuclides  Container type | etc. d cu.m. Ci (estimate %) Fe-59 Mn-54 Fe-55 Co-60 | %<br>% | 5.85E+02<br>3.14E+00<br>1.89<br>8.71<br>69.20<br>17.90<br>LSA (10) |

2.

## EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FOURTH QUARTER

### 3. Other (Oil for incineration)

| a.        | Quantity shipped cu.m.      | 0.00E+00 |
|-----------|-----------------------------|----------|
| b.        | Total activity Ci           | 0.00E+00 |
| c.        | Major nuclides (estimate %) | N/A      |
| d.        | Container type              | N/A      |
| e.        | Container volume cu.m.      | N/A      |
| Irradiate | ed Components               |          |
| a.        | Number of shipments         | 0        |
| b.        | Mode of Transportation      | N/A      |
| c.        | Destination                 | N/A      |

### 5. Solid Waste Disposition

|                    | Number of Shipments | Transportation Mode | <u>Destination</u>  |  |
|--------------------|---------------------|---------------------|---------------------|--|
|                    |                     |                     |                     |  |
|                    | 15                  | Truck               | CNSI, Barnwell, SC  |  |
|                    | 0                   | Truck               | ATG, Oak Ridge, TN  |  |
|                    | 4                   | Truck               | ATG, Richland, WA   |  |
|                    | 2                   | Truck               | GTS, Oak Ridge, TN  |  |
|                    | 6                   | Truck               | AERC, Oak Ridge, TN |  |
|                    | 1                   | Truck               | CNCF, Barnwell, SC  |  |
| TOTAL THIS QUARTER | 28                  |                     |                     |  |

Estimated total error % for spent resins, filter sludges, evaporator bottoms, etc. (Jan-Dec)

13%

Estimated total error % for dry compressible waste, contaminated equipment, etc. (Jan-Dec)

15%

Estimated total error % for other irradiated components (Jan-Dec)

15%

### B. IRRADIATED FUEL SHIPMENTS

None

4.

RADIOLOGICAL IMPACT ON MAN
MAXIMUM DOSES RESULTING FROM RELEASES AND COMPLIANCE
STATUS

\*\*\*\*\*\*\*\* \* DELIVER TO HEALTH PHYSICS \* \*\*\*\*\*\*\*\*

AIRBORNE Effluents- 10CFR50 Listing

09-apr-2001 12:47:25

STATION: LASALLE STATION

UNIT:

PERIOD: 01/01/00 12/31/00

NAME: ODCMLAS REPORT: ANNUAL MODE: ACTUAL

### ACTUAL 2000

### MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 INFANT RECEPTOR

| TYPE                                                                       | 1ST<br>QUARTER<br>JAN-MAR                                                                                  | 2ND<br>QUARTER<br>APR-JUN                                                                                  | 3RD<br>QUARTER<br>JUL-SEP                                                                                  | 4TH<br>QUARTER<br>OCT-DEC                                                                                  | ANNUAL                                                                                                     |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM) | 7.53E-03<br>(WSW )<br>2.61E-04<br>(ESE )<br>5.70E-03<br>(WSW )<br>6.01E-03<br>(WSW )<br>9.45E-04<br>(ESE ) | 2.05E-02<br>(WSW )<br>6.34E-04<br>(ESE )<br>1.55E-02<br>(WSW )<br>1.63E-02<br>(WSW )<br>8.83E-03<br>(ESE ) | 1.18E-02<br>(WSW )<br>3.98E-04<br>(ESE )<br>8.96E-03<br>(WSW )<br>9.45E-03<br>(WSW )<br>2.42E-02<br>(ESE ) | 9.70E-03<br>(WSW )<br>3.17E-04<br>(ESE )<br>7.33E-03<br>(WSW )<br>7.73E-03<br>(WSW )<br>1.01E-02<br>(ESE ) | 4.96E-02<br>(WSW )<br>1.61E-03<br>(ESE )<br>3.75E-02<br>(WSW )<br>3.95E-02<br>(WSW )<br>4.41E-02<br>(ESE ) |
| THIS IS A                                                                  | THYROID                                                                                                    | THYROID                                                                                                    | THYROID                                                                                                    | THYROID                                                                                                    | THYROID                                                                                                    |

### COMPLIANCE STATUS - 10CFR 50 APP. I INFANT RECEPTOR

### ----- % OF APP I. -----

|                  | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| GAMMA AIR (MRAD) | 5.0          | 0.15               | 0.41               | 0.24               | 0.19               | 10.0        | 0.50           |
| BETA AIR (MRAD)  | 10.0         | 0.00               | 0.01               | 0.00               | 0.00               | 20.0        | 0.01           |
| TOT. BODY (MREM) | 2.5          | 0.23               | 0.62               | 0.36               | 0.29               | 5.0         | 0.75           |
| SKIN (MREM)      | 7.5          | 0.08               | 0.22               | 0.13               | 0.10               | 15.0        | 0.26           |
| ORGAN (MREM)     | 7.5          | 0.01               | 0.12               | 0.32               | 0.13               | 15.0        | 0.29           |
|                  |              | THYROID            | THYROID            | THYROID            | THYROID            |             | THYROID        |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

### ACTUAL 2000

### MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 CHILD RECEPTOR

| TYPE                                                                       | 1ST<br>QUARTER<br>JAN-MAR                                                                                  | 2ND<br>QUARTER<br>APR-JUN                                                                                  | 3RD<br>QUARTER<br>JUL-SEP                                                                                  | 4TH<br>QUARTER<br>OCT-DEC                                                                                  | ANNUAL                                                                                                     |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM) | 7.53E-03<br>(WSW )<br>2.61E-04<br>(ESE )<br>5.70E-03<br>(WSW )<br>6.01E-03<br>(WSW )<br>8.07E-04<br>(NNE ) | 2.05E-02<br>(WSW )<br>6.34E-04<br>(ESE )<br>1.55E-02<br>(WSW )<br>1.63E-02<br>(WSW )<br>1.45E-02<br>(NNE ) | 1.18E-02<br>(WSW )<br>3.98E-04<br>(ESE )<br>8.96E-03<br>(WSW )<br>9.45E-03<br>(WSW )<br>3.07E-02<br>(NNE ) | 9.70E-03<br>(WSW )<br>3.17E-04<br>(ESE )<br>7.33E-03<br>(WSW )<br>7.73E-03<br>(WSW )<br>1.45E-02<br>(NNE ) | 4.96E-02<br>(WSW )<br>1.61E-03<br>(ESE )<br>3.75E-02<br>(WSW )<br>3.95E-02<br>(WSW )<br>6.05E-02<br>(NNE ) |
| THIS IS A                                                                  | THYROID REPORT FOR THE                                                                                     | THYROID<br>CALENDAR YEA                                                                                    | THYROID<br>AR 2000                                                                                         | THYROID                                                                                                    | THYROID                                                                                                    |

### COMPLIANCE STATUS - 10CFR 50 APP. I CHILD RECEPTOR

----- % OF APP I. -----

| GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM) | QTRLY<br>OBJ<br>5.0<br>10.0<br>2.5<br>7.5<br>7.5 | 1ST QTR<br>JAN-MAR<br>0.15<br>0.00<br>0.23<br>0.08<br>0.01 | 2ND QTR<br>APR-JUN<br>0.41<br>0.01<br>0.62<br>0.22<br>0.19 | 3RD QTR<br>JUL-SEP<br>0.24<br>0.00<br>0.36<br>0.13<br>0.41 | 4TH QTR<br>OCT-DEC<br>0.19<br>0.00<br>0.29<br>0.10<br>0.19 | YRLY<br>OBJ<br>10.0<br>20.0<br>5.0<br>15.0 | % OF<br>APP. I<br>0.50<br>0.01<br>0.75<br>0.26<br>0.40 |
|----------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|
|                                                                            |                                                  | THYROID                                                    | THYROID                                                    | THYROID                                                    | THYROID                                                    |                                            | THYROID                                                |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

### ACTUAL 2000

### MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 TEENAGER RECEPTOR

| TYPE                | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL             |
|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|
| GAMMA AIR<br>(MRAD) | 7.53E-03<br>(WSW )        | 2.05E-02<br>(WSW )        | 1.18E-02<br>(WSW )        | 9.70E-03<br>(WSW )        | 4.96E-02<br>(WSW ) |
| BETA AIR<br>(MRAD)  | 2.61E-04<br>(ESE )        | 6.34E-04<br>(ESE )        | 3.98E-04<br>(ESE )        | 3.17E-04<br>(ESE )        | 1.61E-03<br>(ESE ) |
| TOT. BODY (MREM)    | 5.70E-03<br>(WSW )        | 1.55E-02<br>(WSW )        | 8.96E-03<br>(WSW )        | 7.33E-03<br>(WSW )        | 3.75E-02<br>(WSW ) |
| SKIN                | 6.01E-03                  | 1.63E-02                  | 9.45E-03                  | 7.73E-03                  | 3.95E-02           |
| (MREM)<br>ORGAN     | (WSW )<br>6.14E-04        | (WSW )<br>9.27E-03        | (WSW )<br>1.91E-02        | (WSW )<br>9.27E-03        | (WSW )<br>3.82E-02 |
| (MREM)              | (NNE )                    | (NNE )                    | (NNE )                    | (NNE )                    | (NNE )             |
|                     | THYROID                   | THYROID                   | THYROID                   | THYROID                   | THYROID            |
| THIS IS A           | REPORT FOR THE            | CALENDAR YE               | AR 2000                   |                           |                    |

### COMPLIANCE STATUS - 10CFR 50 APP. I TEENAGER RECEPTOR

----- % OF APP I. -----

| GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM) | QTRLY<br>OBJ<br>5.0<br>10.0<br>2.5<br>7.5 | 1ST QTR<br>JAN-MAR<br>0.15<br>0.00<br>0.23<br>0.08<br>0.01 | 2ND QTR<br>APR-JUN<br>0.41<br>0.01<br>0.62<br>0.22<br>0.12 | 3RD QTR<br>JUL-SEP<br>0.24<br>0.00<br>0.36<br>0.13<br>0.25 | 4TH QTR<br>OCT-DEC<br>0.19<br>0.00<br>0.29<br>0.10<br>0.12 | YRLY<br>OBJ<br>10.0<br>20.0<br>5.0<br>15.0 | % OF<br>APP. I<br>0.50<br>0.01<br>0.75<br>0.26<br>0.25 |
|----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| CROTAL (TACALLY                                                            | ,.5                                       | THYROID                                                    | THYROID                                                    | THYROID                                                    | THYROID                                                    |                                            | THYROID                                                |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

### ACTUAL 2000

### MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 ADULT RECEPTOR

| TYPE                | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL             |
|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|
| GAMMA AIR<br>(MRAD) | 7.53E-03<br>(WSW )        | 2.05E-02<br>(WSW )        | 1.18E-02<br>(WSW )        | 9.70E-03<br>(WSW )        | 4.96E-02<br>(WSW ) |
| BETA AIR<br>(MRAD)  | 2.61E-04<br>(ESE )        | 6.34E-04<br>(ESE )        | 3.98E-04<br>(ESE )        | 3.17E-04<br>(ESE )        | 1.61E-03<br>(ESE ) |
| TOT. BODY           | 5.70E-03<br>(WSW )        | 1.55E-02<br>(WSW )        | 8.96E-03<br>(WSW )        | 7.33E-03<br>(WSW )        | 3.75E-02           |
| (MREM)<br>SKIN      | 6.01E-03                  | 1.63E-02                  | 9.45E-03                  | 7.73E-03                  | (WSW )<br>3.95E-02 |
| (MREM)              | (WSW )                    | (WSW )                    | (WSW )                    | (WSW )                    | (WSW )             |
| ORGAN               | 6.77E-04                  | 9.11E-03                  | 1.92E-02                  | 9.27E-03                  | 3.83E-02           |
| (MREM)              | (NNE )                    | (NNE )                    | (NNE )                    | (NNE )                    | (NNE )             |
|                     | THYROID                   | THYROID                   | THYROID                   | THYROID                   | THYROID            |
| THIS IS A           | REPORT FOR THE            | CALENDAR YEA              | AR 2000                   |                           |                    |

### COMPLIANCE STATUS - 10CFR 50 APP. I ADULT RECEPTOR

----- % OF APP I. -----

| GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM) | QTRLY<br>OBJ<br>5.0<br>10.0<br>2.5<br>7.5 | 1ST QTR<br>JAN-MAR<br>0.15<br>0.00<br>0.23<br>0.08<br>0.01 | 2ND QTR<br>APR-JUN<br>0.41<br>0.01<br>0.62<br>0.22<br>0.12 | 3RD QTR<br>JUL-SEP<br>0.24<br>0.00<br>0.36<br>0.13<br>0.26 | 4TH QTR<br>OCT-DEC<br>0.19<br>0.00<br>0.29<br>0.10<br>0.12 | YRLY<br>OBJ<br>10.0<br>20.0<br>5.0<br>15.0 | % OF<br>APP. I<br>0.50<br>0.01<br>0.75<br>0.26 |
|----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
| ORGAN (PREELY)                                                             | ,.5                                       | THYROID                                                    | THYROID                                                    | THYROID                                                    | THYROID                                                    |                                            | THYROID                                        |

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

\*\*\*\*\*\*\*\* \* DELIVER TO HEALTH PHYSICS \* \*\*\*\*\*\*\*

AQUATIC Effluents- 10CFR50 Listing

09-apr-2001 12:49:04

STATION: LASALLE STATION

UNIT:

PERIOD: 01/01/00 12/31/00

ODCMLAS NAME: REPORT: ANNUAL MODE: ACTUAL

### ACTUAL 2000

### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 INFANT RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.58E-06                  | 2.58E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 1.18E-05                  | 1.18E-05 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                   | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|-------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM) | 1.5          | 0.00               | 0.00               | 0.00               | 0.00               | 3.0         | 0.00           |
| CRIT. ORGAN (MREM | 5.0          | 0.00               | 0.00               | 0.00               | 0.00               | 10.0        | 0.00           |
|                   |              |                    |                    |                    | LIVER              |             | LIVER          |

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

### 2000 ANNUAL REPORT

## PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 INFANT RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.58E-06                  | 2.58E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 1.18E-05                  | 1.18E-05 |
| OKGAIA            |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON: ODCM ANNEX R

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

### ACTUAL 2000

### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 CHILD RECEPTOR

| DOSE TYPE        | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL            | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 6.26E-05                  | 6.26E-05 |
| BODY<br>INTERNAL | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.20E-04                  | 3.20E-04 |
| ORGAN            |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

### COMPLIANCE STATUS - 10 CFR 50 APP. I

---- % OF APP I. -----

|                    | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|--------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM)  | 1.5          | 0.00               | 0.00               | 0.00               | 0.00               | 3.0         | 0.00           |
| CRIT. ORGAN (MREM) | 5.0          | 0.00               | 0.00               | 0.00               | 0.01               | 10.0        | 0.00           |
|                    |              |                    |                    |                    | LIVER              |             | LIVER          |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

### 2000 ANNUAL REPORT PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \*

PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 CHILD RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.09E-06                  | 3.09E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 9.57E-06                  | 9.57E-06 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

ACTUAL 2000

### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 TEENAGER RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 1.38E-04                  | 1.38E-04 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.53E-04                  | 3.53E-04 |
| ORGAIN            |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                    | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|--------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM)  | 1.5          | 0.00               | 0.00               | 0.00               | 0.01               | 3.0         | 0.00           |
| CRIT. ORGAN (MREM) | 5.0          | 0.00               | 0.00               | 0.00               | 0.01               | 10.0        | 0.00           |
|                    |              |                    |                    |                    | LIVER              |             | LIVER          |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

### 2000 ANNUAL REPORT

## PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 TEENAGER RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.26E-06                  | 2.26E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 4.74E-06                  | 4.74E-06 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

#### ACTUAL 2000

#### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 ADULT RECEPTOR

| DOSE TYPE     | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|---------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.42E-04                  | 2.42E-04 |
| INTERNAL      | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.48E-04                  | 3.48E-04 |
| ORGAN         |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                   | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|-------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM  | ) 1.5        | 0.00               | 0.00               | 0.00               | 0.02               | 3.0         | 0.01           |
| CRIT. ORGAN (MREM | ) 5.0        | 0.00               | 0.00               | 0.00               | 0.01               | 10.0        | 0.00           |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

LIVER

LIVER

#### 2000 ANNUAL REPORT

## PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 ADULT RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.81E-06                  | 3.81E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 5.17E-06                  | 5.17E-06 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 40 CFR 141

| ANNUAL LIMIT | % OF LIMIT |
|--------------|------------|
| 4.0 MREM     | 0.000      |
| 4.0 MREM     | 0.000      |
|              | 4.0 MREM   |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995 \*\*\*\*\*\*\*\*\* \* DELIVER TO HEALTH PHYSICS \* \*\*\*\*\*\*\*\*

AQUATIC Effluents- 10CFR50 Listing

09-apr-2001 12:50:33

STATION: LASALLE STATION

UNIT:

PERIOD: 01/01/00 12/31/00

NAME: ODCMLAS REPORT: ANNUAL MODE: ACTUAL

#### ACTUAL 2000

#### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 INFANT RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.58E-06                  | 2.58E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 1.18E-05                  | 1.18E-05 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                    | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|--------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM)  | 1.5          | 0.00               | 0.00               | 0.00               | 0.00               | 3.0         | 0.00           |
| CRIT. ORGAN (MREM) | 5.0          | 0.00               | 0.00               | 0.00               | 0.00               | 10.0        | 0.00           |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

LIVER

LIVER

#### 2000 ANNUAL REPORT

## PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 INFANT RECEPTOR

| DOSE TYPE                 | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL                     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.58E-06                  | 2.58E-06 |
| BODY<br>INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 1.18E-05                  | 1.18E-05 |
| ORGAIN                    |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

#### ACTUAL 2000

#### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 CHILD RECEPTOR

| DOSE TYPE                 | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL                     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 6.26E-05                  | 6.26E-05 |
| BODY<br>INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.20E-04                  | 3.20E-04 |
| ORGAN                     |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                    | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|--------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM   | ) 1.5        | 0.00               | 0.00               | 0.00               | 0.00               | 3.0         | 0.00           |
| CRIT. ORGAN (MREM) | ) 5.0        | 0.00               | 0.00               | 0.00               | 0.01               | 10.0        | 0.00           |
|                    |              |                    |                    |                    | LIVER              |             | LIVER          |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

#### 2000 ANNUAL REPORT

## PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 CHILD RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.09E-06                  | 3.09E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 9.57E-06                  | 9.57E-06 |
| OKOAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

#### ACTUAL 2000

#### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 TEENAGER RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 1.38E-04                  | 1.38E-04 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.53E-04                  | 3.53E-04 |
| OKOM              |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                    | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|--------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM)  | 1.5          | 0.00               | 0.00               | 0.00               | 0.01               | 3.0         | 0.00           |
| CRIT. ORGAN (MREM) | 5.0          | 0.00               | 0.00               | 0.00               | 0.01               | 10.0        | 0.00           |
|                    |              |                    |                    |                    | LIVER              |             | LIVER          |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

#### 2000 ANNUAL REPORT

## PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 TEENAGER RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.26E-06                  | 2.26E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 4.74E-06                  | 4.74E-06 |
| ORGAIN            |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

ACTUAL 2000

#### MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 ADULT RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 2.42E-04                  | 2.42E-04 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.48E-04                  | 3.48E-04 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

|                   | QTRLY<br>OBJ | 1ST QTR<br>JAN-MAR | 2ND QTR<br>APR-JUN | 3RD QTR<br>JUL-SEP | 4TH QTR<br>OCT-DEC | YRLY<br>OBJ | % OF<br>APP. I |
|-------------------|--------------|--------------------|--------------------|--------------------|--------------------|-------------|----------------|
| TOTAL BODY (MREM  | ) 1.5        | 0.00               | 0.00               | 0.00               | 0.02               | 3.0         | 0.01           |
| CRIT. ORGAN (MREM | 5.0          | 0.00               | 0.00               | 0.00               | 0.01               | 10.0        | 0.00           |
|                   |              |                    |                    |                    | LIVER              |             | LIVER          |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

## 2000 ANNUAL REPORT PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM \* PERIOD OF RELEASE - 01/01/00 TO 12/31/00 CALCULATED 04/09/01 ADULT RECEPTOR

| DOSE TYPE         | 1ST<br>QUARTER<br>JAN-MAR | 2ND<br>QUARTER<br>APR-JUN | 3RD<br>QUARTER<br>JUL-SEP | 4TH<br>QUARTER<br>OCT-DEC | ANNUAL   |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
| TOTAL<br>BODY     | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 3.81E-06                  | 3.81E-06 |
| INTERNAL<br>ORGAN | 0.00E+00                  | 0.00E+00                  | 0.00E+00                  | 5.17E-06                  | 5.17E-06 |
| ORGAN             |                           |                           |                           | LIVER                     | LIVER    |

THIS IS A REPORT FOR THE CALENDAR YEAR 2000

#### COMPLIANCE STATUS - 40 CFR 141

| TYPE              | ANNUAL LIMIT | % OF LIMIT |
|-------------------|--------------|------------|
| TOTAL<br>BODY     | 4.0 MREM     | 0.000      |
| INTERNAL<br>ORGAN | 4.0 MREM     | 0.000      |

LIVER

\* THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

RESULTS BASED UPON:

ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995 \*\*\*\*\*\*\*\*\*\* \* DELIVER TO HEALTH PHYSICS \* \*\*\*\*\*\*\*\*

09-apr-2001 13:48:35

Total Effective Dose Equivalent - 10CFR20 Listing

STATION: LASALLE STATION

UNIT:

PERIOD: 01/01/00 12/31/00

ODCMLAS NAME: REPORT: ANNUAL ACTUAL MODE:

For ADULT dose calculations, the included pathways are:

INHALATION

MILK

PRODUCE

VEGETABLES

MEAT

GROUND DEPOSITION

FISH

WATER

SKYSHINE

WHOLE BODY

Airborne Effluents are complete from 01/01/00 to 12/31/00 Aquatic Effluents are complete from 12/01/00 to 12/31/00 Skyshine entries are complete from 01/01/00 to 12/31/00

#### 10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/00 TO 12/31/00 CALCULATED 04/09/01

#### 1. 10 CFR 20.1301 (a)(1) Compliance

Total Effective Dose Eqivalent, mrem/yr 4.93E-01

10 CFR 20.1301 (a)(1) limit mrem/yr 100.0

% of limit 0.49

#### Compliance Summary - 10CFR20

1st 2nd 3rd 4th % of Qtr Qtr Qtr Qtr Limit
TEDE 6.61E-02 1.41E-01 1.31E-01 1.55E-01 0.49

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995 ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

# 10 CFR 20 COMPLIANCE ASSESSMENT PERIOD OF ASSESSMENT 01/01/00 TO 12/31/00 CALCULATED 04/09/01

#### 2. <u>10 CFR 20.1301 (d)/40 CFR 190 Compliance</u>

|                     |                                                                    | Dose<br>(mrem)                                                                   | Limit<br>(mrem)                                      | % of<br>Limit                                |
|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| Whole Body<br>(DDE) | Plume<br>Skyshine<br>Ground<br>Total                               | 3.75E-02<br>4.45E-01<br>7.05E-04<br>4.83E-01                                     | 25.0                                                 | 1.93                                         |
| Organ Dose<br>(CDE) | Thyroid<br>Gonads<br>Breast<br>Lung<br>Marrow<br>Bone<br>Remainder | 3.10E-02<br>9.41E-03<br>9.38E-03<br>9.38E-03<br>9.40E-03<br>9.39E-03<br>9.49E-03 | 75.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | 0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 |
|                     | CEDE                                                               | 1.01E-02                                                                         |                                                      |                                              |
|                     | TEDE                                                               | <u>4.93E-01</u>                                                                  | 100.0                                                | 0.49                                         |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

09-apr-2001 13:49:30

Total Effective Dose Equivalent - 10CFR20 Listing

STATION: LASALLE STATION

UNIT: 2

PERIOD: 01/01/00 12/31/00

NAME: ODCMLAS REPORT: ANNUAL MODE: ACTUAL

For ADULT dose calculations, the included pathways are:

INHALATION

MILK PRODUCE VEGETABLES MEAT

GROUND DEPOSITION

FISH WATER SKYSHINE WHOLE BODY

Airborne Effluents are complete from to

Aquatic Effluents are complete from 12/01/00 to 12/31/00

Skyshine entries are complete from 01/01/00 to 12/31/00

#### 10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/00 TO 12/31/00 CALCULATED 04/09/01

#### 1. 10 CFR 20.1301 (a) (1) Compliance

Total Effective Dose Eqivalent, mrem/yr 1.73E-01

10 CFR 20.1301 (a)(1) limit mrem/yr 100.0

% of limit 0.17

#### Compliance Summary - 10CFR20

1st 2nd 3rd 4th % of Qtr Qtr Qtr Qtr Limit

TEDE 3.91E-02 1.14E-02 5.84E-02 6.45E-02 0.17

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995

ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

# 10 CFR 20 COMPLIANCE ASSESSMENT PERIOD OF ASSESSMENT 01/01/00 TO 12/31/00 CALCULATED 04/09/01

#### 2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

|                     |                                                                    | Dose<br>(mrem)                                                                   | Limit<br>(mrem)                                      | % of<br>Limit                                |
|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| Whole Body<br>(DDE) | Plume<br>Skyshine<br>Ground<br>Total                               | 0.00E+00<br>1.73E-01<br>0.00E+00<br>1.73E-01                                     | _25.0                                                | 0.69                                         |
| Organ Dose<br>(CDE) | Thyroid<br>Gonads<br>Breast<br>Lung<br>Marrow<br>Bone<br>Remainder | 1.58E-04<br>1.83E-04<br>1.57E-04<br>1.59E-04<br>1.73E-04<br>1.65E-04<br>2.01E-04 | 75.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
|                     | CEDE                                                               | 1.79E-04                                                                         |                                                      |                                              |
|                     | TEDE                                                               | 1.73E-01                                                                         | 100.0                                                | 0.17                                         |

RESULTS BASED UPON: ODCM ANNEX REVISION 1.7 SEPTEMBER 1995

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000)

### METEOROLOGICAL DATA

January-March 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

## NUMBER OF OBSERVATIONS - 2077 VALUES ARE PERCENT OCCURRENCE

| PEED         |      |      |      |              |      |      |      |      |      |      |      |      |      |      |      |      | TOTAL | F   | 1011 | C    |      | cr   | 140  |    |
|--------------|------|------|------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-----|------|------|------|------|------|----|
| LASS         | N    | NNE  | NE   | ENE          | E    | ESE  | SE   | SSE  | S    | SSW  | SW   | WSW  | W    | WNW  | NW   | NNW  | TOTAL | EU  | MU   | SU   | N    | SS   | MS   | ES |
| ΕU           | . 00 | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | . 00 | . 00 | .00  | .00  | . 00  | .00 |      |      |      |      |      |    |
| MU           | .00  | .00  | .00  | . 00         | . 00 | . 00 | .00  | .00  | .00  | .00  | .00  | .00  | . 00 | . 00 | . 00 | .00  | .00   |     | .00  |      |      |      |      |    |
| : SU         | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | . 00 | .00  | .00  | .00   |     |      | .00  |      |      |      |    |
| N N          | .00  | .00  | . 00 | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      |      | . 00 |      |      |    |
| . SS         | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      |      |      | .00  |      |    |
| 1 MS         | .00  | . 00 | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | . 00 | . 00  |     |      |      |      |      | . 00 |    |
| ES           | .00  | .00  | .00  | .00          | .00  | .00  | . 00 | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      |      |      |      |      | .0 |
| CII          | 00   | 00   | 00   | 00           | . 00 | . 00 | . 00 | .00  | . 00 | . 00 | .00  | . 00 | .00  | .00  | .00  | .00  | .00   | .00 |      |      |      |      |      |    |
| EU           | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | .00  |      |      |      |      |    |
| MU           | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      | . 00 |      |      |      |    |
| LSU          | .00  | .00  | .00  | .00          | .00  | .00  | .05  | . 05 | .00  | .00  | .00  | .00  | .05  | . 05 | .00  | . 10 | .34   |     |      |      | .34  |      |      |    |
| N            | .00  | .00  | .00  | . 05<br>. 05 | .05  | .00  | .00  | .05  | .10  | .00  | .00  | .00  | .05  | .10  | .00  | .05  | .53   |     |      |      |      | . 53 |      |    |
| 3 SS         | .00  | . 05 | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .05  | .00  | .00  | .05   |     |      |      |      |      | . 05 |    |
| MS           |      | .00  |      | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      |      |      |      |      |    |
| ES           | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  |      | .00   |     |      |      |      |      |      |    |
| EU           | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | . 00 | .00   | .00 |      |      |      |      |      |    |
| MU           | .00  | .00  | .00  | .00          | . 00 | . 00 | .00  | .00  | . 00 | .00  | .00  | . 00 | .00  | .00  | .00  | .00  | .00   |     | .00  |      |      |      |      |    |
| SU           | .00  | .00  | . 00 | . 00         | .00  | . 00 | .00  | .00  | .00  | .00  | . 00 | .00  | .00  | . 00 | .00  | .00  | .00   |     |      | . 00 |      |      |      |    |
| N            | .29  | . 24 | . 14 | . 19         | .34  | . 14 | . 29 | . 19 | . 24 | . 10 | . 10 | .29  | . 19 | . 14 | .05  | . 14 | 3.08  |     |      |      | 3.08 |      |      |    |
| ss s         | . 05 | . 19 | . 14 | . 29         | . 19 | . 19 | . 14 | . 10 | . 14 | . 10 | . 05 | . 05 | . 19 | . 10 | .29  | . 24 | 2.46  |     |      |      |      | 2.46 |      |    |
| MS           | . 05 | . 00 | . 05 | . 19         | .05  | . 05 | . 05 | .00  | . 05 | .00  | .00  | .00  | .00  | . 10 | . 05 | .00  | . 63  |     |      |      |      |      | . 63 |    |
| ES           | . 00 | .00  | .00  | .00          | . 14 | .00  | .00  | .00  | .00  | ,00  | .00  | .00  | .00  | .00  | .00  | .00  | . 14  |     |      |      |      |      |      | ٠  |
| EV           | .00  | .00  | .00  | .00          | . 00 | .00  | . 00 | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   | .00 |      |      |      |      |      |    |
| MU           | .00  | .00  | .00  | . 00         | . 00 | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | .00  |      |      |      |      |    |
| 3 SU         | . 00 | . 00 | .00  | . 00         | .00  | . 00 | .00  | .00  | . 00 | .00  | .00  | .00  | . 00 | .00  | .00  | .00  | .00   |     |      | . 00 |      |      |      |    |
| - N          | . 58 | 1.06 | . 14 | . 10         | . 05 | . 10 | . 14 | .00  | .48  | .48  | . 14 | . 29 | .24  | .39  | . 77 | . 58 | 5.54  |     |      |      | 5.54 |      |      |    |
| l SS         | . 19 | .39  | .34  | . 58         | .48  | . 48 | . 14 | . 24 | .29  | . 24 | . 24 | . 19 | .43  | .29  | . 29 | . 14 | 4.96  |     |      |      |      | 4.96 |      |    |
| 2 <b>M</b> S | .00  | . 10 | . 05 | .05          | . 10 | . 24 | .39  | . 14 | .00  | .00  | .05  | . 05 | . 19 | . 14 | . 10 | . 10 | 1.69  |     |      |      |      |      | 1.69 |    |
| ES           | .00  | .00  | .00  | .00          | .24  | . 10 | .00  | . 00 | .00  | .00  | .00  | .00  | . 00 | .10  | . 19 | . 00 | .63   |     |      |      |      |      |      |    |
| EU           | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | . 00 | .00  | . 00 | .00  | .00  | .00  | .00   | .00 |      |      |      |      |      |    |
| 1 MU         | .00  | .00  | .00  | .00          | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | .00  |      |      |      |      |    |
| 3 SU         | .00  | . 05 | . 00 | .00          | . 00 | . 05 | .00  | .00  | .00  | .00  | .05  | .00  | .00  | .00  | .00  | .00  | . 14  |     |      | . 14 |      |      |      |    |
| - N          | . 82 |      | . 77 | .67          | .43  | .48  | .72  | . 10 | .58  | .29  | .43  | .39  | . 53 | .58  | .34  | . 63 | 8.76  |     |      |      | 8.76 |      |      |    |
| 1 SS         | .67  | .67  | . 39 | .48          | .58  | .77  | .24  | . 19 | .39  | .39  | .43  | . 19 | .29  | .24  | . 24 | .43  | 6.60  |     |      |      |      | 6.60 |      |    |
| 8 MS         | . 10 | . 05 | . 00 | .00          | . 10 | .48  | . 19 | .24  | . 14 | . 10 | .39  | .05  | . 19 | . 19 | . 48 | . 39 | 3.08  |     |      |      |      |      | 3.08 |    |
| ES           | .00  | . 10 | .00  |              | . 10 | .00  | .00  | . 10 | . 10 | .19  | . 14 | .00  | . 05 | .34  | .34  | . 00 | 1.44  |     |      |      |      |      |      | 1. |

### ComEd LASALLE STATION 375 ft. WIND SPEED and WIND DIRECTION

.77 1.54 .53 .72 .87 .91 .67 .39 .77

January-March 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

|             | • • •                                    |                                                 | · • •                                     |                                                 | • • • • •                                       | • • • • • •                                     | - WIND                                          | DIREC                                          | TION C                                           | LY22F2                                           |                                                   |                                                 |                                                  |                                                  |                                                  | • • • • •                                        |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21MR1F                                              | TIY C                            | CLASSES |       |   |
|-------------|------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|---------|-------|---|
| LASS        | N                                        | NNE                                             | NE                                        | ENE                                             | Ε                                               | ESE                                             | SE                                              | SSE                                            | S                                                | SSW                                              | SW                                                | WSW                                             | W                                                | WNW                                              | NW                                               | NNW                                              | TOTAL                                                | EU                                                   | MU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SU                                                  | N                                | SS      | MS    | 1 |
| EU          | . 00                                     | .00                                             | . 00                                      | .00                                             | .00                                             | . 00                                            | .00                                             | .00                                            | .00                                              | .00                                              | .00                                               | . 00                                            | .00                                              | . 00                                             | . 00                                             | . 00                                             | . 00                                                 | .00                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         |       |   |
| MU          | .00                                      | .00                                             | .00                                       | .00                                             | .00                                             | .00                                             | .00                                             | .00                                            | .00                                              | .00                                              | .00                                               | .00                                             | .00                                              | .00                                              | . 00                                             | .00                                              | .00                                                  |                                                      | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                  |         |       |   |
| SU          | .00                                      | . 10                                            | .00                                       | .00                                             | .00                                             | . 14                                            | .00                                             | .00                                            | . 10                                             | . 05                                             | . 14                                              | . 05                                            | .00                                              | .00                                              | .00                                              | .00                                              | . 58                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .58                                                 |                                  |         |       |   |
| N           | . 91                                     | .58                                             | .53                                       | . 53                                            | .43                                             | . 58                                            | .39                                             | . 10                                           | .34                                              | .39                                              | .87                                               | .67                                             | . 48                                             | 1.16                                             | 1.06                                             | 1.30                                             | 10.30                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                   | 0.30                             |         |       |   |
| SS          | .48                                      | .29                                             | . 14                                      | .24                                             | 1.01                                            | .43                                             | .39                                             | .29                                            | .67                                              | .63                                              | .77                                               | . 29                                            | . 53                                             | .91                                              | . 63                                             | .43                                              | 8.14                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  | 8.14    |       |   |
| MS          | . 10                                     | . 05                                            | .00                                       | .00                                             | . 10                                            | . 14                                            | . 14                                            | . 10                                           | .39                                              | . 10                                             | . 24                                              | . 19                                            | . 10                                             | . 96                                             | 1.16                                             | .43                                              | 4.19                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         | 4.19  |   |
| ES          | .00                                      | . 10                                            | .00                                       | .00                                             | . 00                                            | . 10                                            | . 10                                            | .00                                            | . 05                                             | . 05                                             | .39                                               | . 05                                            | . 19                                             | . 19                                             | .10                                              | .00                                              | 1.30                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         |       | 1 |
| EU          | .00                                      | .00                                             | .00                                       | .00                                             | . 00                                            | . 00                                            | . 00                                            | . 00                                           | .00                                              | .00                                              | .00                                               | .00                                             | .00                                              | . 00                                             | .00                                              | . 00                                             | .00                                                  | .00                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         |       |   |
| MU          | .00                                      | .00                                             | .00                                       | .00                                             | .00                                             | .00                                             | .00                                             | .00                                            | .00                                              | .00                                              | .00                                               | .00                                             | .00                                              | .00                                              | .00                                              | .00                                              | .00                                                  |                                                      | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                  |         |       |   |
| SU          | .00                                      | .00                                             | .00                                       | .00                                             | .00                                             | .00                                             | .00                                             | .00                                            | . 05                                             | . 10                                             | .00                                               | .00                                             | .00                                              | .00                                              | .00                                              | .00                                              | . 14                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 14                                                |                                  |         |       |   |
| N           | .29                                      | .00                                             | .34                                       | .91                                             | .43                                             | . 39                                            | .00                                             | .39                                            | 1.35                                             | .48                                              | .67                                               | .77                                             | . 53                                             | 1.93                                             | 1.35                                             | 1.01                                             | 10.83                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                   | 0.83                             |         |       |   |
| SS          | .24                                      | .00                                             | .00                                       | .00                                             | .34                                             | . 24                                            | .29                                             | .87                                            | 1.83                                             | 2.65                                             | 1.49                                              | 1.54                                            | 1.64                                             | 2.94                                             | .77                                              | . 58                                             | 15.41                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  | 15.41   |       |   |
| MS          | .00                                      | .00                                             | .00                                       | .00                                             | .00                                             | . 05                                            | . 19                                            | . 14                                           | 1.54                                             | 1.73                                             | 1.40                                              | . 67                                            | . 58                                             | .48                                              | .00                                              | . 14                                             | 6.93                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         | 6.93  |   |
| ES          | .00                                      | .00                                             | .00                                       | .00                                             | . 00                                            | . 00                                            | . 00                                            | . 19                                           | . 10                                             | .43                                              | .67                                               | .24                                             | . 34                                             | . 14                                             | .00                                              | .00                                              | 2.12                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         |       | 2 |
| гот         | 4.77                                     | 5.01                                            | 3.03                                      | 4.33                                            | 5.15                                            | 5.20                                            | 3.85                                            | 3.47                                           | 8.91                                             | 8.47                                             | 8.67                                              | 5.97                                            | 6.79                                             | 11.51                                            | 8.18                                             | 6.69                                             | 100.00                                               | .00                                                  | . 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .87 3                                               | 88.85                            | 38.08   | 16.56 | ę |
| <b>Nind</b> | Direc                                    |                                                 |                                           |                                                 |                                                 |                                                 |                                                 |                                                |                                                  |                                                  |                                                   |                                                 |                                                  |                                                  |                                                  |                                                  |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         |       |   |
|             |                                          |                                                 |                                           | ility                                           |                                                 |                                                 |                                                 |                                                |                                                  |                                                  |                                                   |                                                 |                                                  |                                                  |                                                  |                                                  |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                  |         |       |   |
|             | N                                        | tion b                                          | NE NE                                     | ility<br>ENE                                    | E                                               | ESE                                             | SE                                              | SSE                                            | S                                                | SSW                                              | SW                                                | WSW                                             | W                                                | WNW                                              | N₩                                               | NNN                                              | TOTAL                                                | -STA                                                 | ABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / CLASS                                             | SES ·                            |         |       |   |
|             |                                          |                                                 |                                           |                                                 | E<br>.00                                        | ESE                                             | SE<br>.00                                       | SSE                                            | S<br>.00                                         | SSW<br>.00                                       | SW<br>. 00                                        | WSW                                             | . 00                                             | . 00                                             | <b>N₩</b><br>.00                                 | <b>NNW</b><br>.00                                | TOTAL                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLASS<br>Unstab                                     |                                  |         |       |   |
|             | N                                        | NNE                                             | NE                                        | ENE                                             |                                                 |                                                 |                                                 |                                                |                                                  |                                                  |                                                   |                                                 |                                                  |                                                  |                                                  |                                                  |                                                      | Extr                                                 | emely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | ole                              |         |       |   |
|             | .00<br>.00                               | .00<br>.00<br>.14                               | .00<br>.00                                | .00<br>.00<br>.00                               | .00                                             | .00<br>.00<br>.19                               | .00                                             | .00                                            | .00<br>.00                                       | .00<br>.00                                       | .00<br>.00<br>.19                                 | .00<br>.00<br>.05                               | .00                                              | .00                                              | .00                                              | .00<br>.00                                       | .00<br>.00<br>.87                                    | Extr<br>Mode<br>Slig                                 | remely<br>erately<br>ghtly (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unstab                                              | ole<br>able                      |         |       |   |
|             | .00<br>.00<br>.00                        | .00<br>.00<br>.14<br>2.89                       | .00<br>.00<br>.00                         | .00<br>.00<br>.00                               | .00<br>.00<br>.00<br>1.69                       | .00<br>.00<br>.19<br>1.69                       | .00<br>.00<br>.00<br>1.59                       | .00<br>.00<br>.00                              | .00<br>.00<br>.14<br>2.99                        | .00<br>.00<br>.14<br>1.73                        | .00<br>.00<br>.19<br>2.21                         | .00<br>.00<br>.05<br>2.41                       | .00<br>.00<br>.00<br>2.02                        | .00<br>.00<br>.00<br>4.24                        | .00<br>.00<br>.00<br>3.56                        | .00<br>.00<br>.00<br>3.76                        | .00<br>.00<br>.87<br>38.85                           | Extr<br>Mode<br>Slig<br>Neut                         | remely<br>erately<br>ghtly U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unstab<br>y Unsta<br>Jnstabl                        | ole<br>able                      |         |       |   |
|             | .00<br>.00<br>.00<br>2.89                | .00<br>.00<br>.14<br>2.89<br>1.59               | NE .00 .00 .00 1.93 1.01                  | .00<br>.00<br>.00<br>2.46<br>1.64               | .00<br>.00<br>.00<br>1.69<br>2.65               | .00<br>.00<br>.19<br>1.69<br>2.17               | .00<br>.00<br>.00<br>1.59<br>1.20               | .00<br>.00<br>.00<br>.82                       | .00<br>.00<br>.14<br>2.99<br>3.42                | .00<br>.00<br>.14<br>1.73<br>4.00                | .00<br>.00<br>.19<br>2.21<br>2.99                 | .00<br>.00<br>.05<br>2.41<br>2.26               | .00<br>.00<br>.00<br>2.02<br>3.13                | .00<br>.00<br>.00<br>4.24<br>4.57                | .00<br>.00<br>.00<br>3.56<br>2.21                | .00<br>.00<br>.00<br>3.76<br>1.88                | .00<br>.00<br>.87<br>38.85<br>38.08                  | Extr<br>Mode<br>Slig<br>Neut<br>Slig                 | emely<br>erately<br>ghtly l<br>cral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unstab<br>y Unsta<br>Unstabl<br>Stable              | ole<br>able<br>le                |         |       |   |
|             | .00<br>.00<br>.00<br>2.89<br>1.64        | .00<br>.00<br>.14<br>2.89<br>1.59               | .00<br>.00<br>.00<br>1.93<br>1.01         | .00<br>.00<br>.00<br>2.46<br>1.64<br>.24        | .00<br>.00<br>.00<br>1.69<br>2.65               | .00<br>.00<br>.19<br>1.69<br>2.17               | .00<br>.00<br>.00<br>1.59<br>1.20               | .00<br>.00<br>.00<br>.82<br>1.73<br>.63        | .00<br>.00<br>.14<br>2.99<br>3.42<br>2.12        | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93        | .00<br>.00<br>.19<br>2.21<br>2.99<br>2.07         | .00<br>.00<br>.05<br>2.41<br>2.26               | .00<br>.00<br>.00<br>2.02<br>3.13<br>1.06        | .00<br>.00<br>.00<br>4.24<br>4.57<br>1.93        | .00<br>.00<br>.00<br>3.56<br>2.21<br>1.78        | .00<br>.00<br>.00<br>3.76<br>1.88<br>1.06        | .00<br>.00<br>.87<br>38.85<br>38.08<br>16.56         | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode         | remely<br>erately<br>phtly U<br>cral<br>phtly S<br>erately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unstab<br>y Unsta<br>Jnstabl<br>Stable<br>y Stabl   | ole<br>able<br>le                |         |       |   |
|             | .00<br>.00<br>.00<br>2.89                | .00<br>.00<br>.14<br>2.89<br>1.59               | NE .00 .00 .00 1.93 1.01                  | .00<br>.00<br>.00<br>2.46<br>1.64               | .00<br>.00<br>.00<br>1.69<br>2.65               | .00<br>.00<br>.19<br>1.69<br>2.17               | .00<br>.00<br>.00<br>1.59<br>1.20               | .00<br>.00<br>.00<br>.82                       | .00<br>.00<br>.14<br>2.99<br>3.42                | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93        | .00<br>.00<br>.19<br>2.21<br>2.99                 | .00<br>.00<br>.05<br>2.41<br>2.26               | .00<br>.00<br>.00<br>2.02<br>3.13                | .00<br>.00<br>.00<br>4.24<br>4.57                | .00<br>.00<br>.00<br>3.56<br>2.21                | .00<br>.00<br>.00<br>3.76<br>1.88                | .00<br>.00<br>.87<br>38.85<br>38.08                  | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode         | remely<br>erately<br>phtly U<br>cral<br>phtly S<br>erately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unstab<br>y Unsta<br>Unstabl<br>Stable              | ole<br>able<br>le                |         |       |   |
|             | .00<br>.00<br>.00<br>2.89<br>1.64<br>.24 | .00<br>.00<br>.14<br>2.89<br>1.59<br>.19        | .00<br>.00<br>.00<br>1.93<br>1.01         | .00<br>.00<br>.00<br>2.46<br>1.64<br>.24        | .00<br>.00<br>.00<br>1.69<br>2.65<br>.34<br>.48 | .00<br>.00<br>.19<br>1.69<br>2.17               | .00<br>.00<br>.00<br>1.59<br>1.20               | .00<br>.00<br>.00<br>.82<br>1.73<br>.63        | .00<br>.00<br>.14<br>2.99<br>3.42<br>2.12        | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93        | .00<br>.00<br>.19<br>2.21<br>2.99<br>2.07         | .00<br>.00<br>.05<br>2.41<br>2.26               | .00<br>.00<br>.00<br>2.02<br>3.13<br>1.06        | .00<br>.00<br>.00<br>4.24<br>4.57<br>1.93        | .00<br>.00<br>.00<br>3.56<br>2.21<br>1.78        | .00<br>.00<br>.00<br>3.76<br>1.88<br>1.06        | .00<br>.00<br>.87<br>38.85<br>38.08<br>16.56         | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode         | remely<br>erately<br>phtly U<br>cral<br>phtly S<br>erately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unstab<br>y Unsta<br>Jnstabl<br>Stable<br>y Stabl   | ole<br>able<br>le                |         |       |   |
|             | .00<br>.00<br>.00<br>2.89<br>1.64<br>.24 | .00<br>.00<br>.14<br>2.89<br>1.59<br>.19        | NE .00 .00 .00 1.93 1.01 .10 .00          | .00<br>.00<br>.00<br>2.46<br>1.64<br>.24        | .00<br>.00<br>.00<br>1.69<br>2.65<br>.34<br>.48 | .00<br>.00<br>.19<br>1.69<br>2.17               | .00<br>.00<br>.00<br>1.59<br>1.20               | .00<br>.00<br>.00<br>.82<br>1.73<br>.63        | .00<br>.00<br>.14<br>2.99<br>3.42<br>2.12        | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93        | .00<br>.00<br>.19<br>2.21<br>2.99<br>2.07         | .00<br>.00<br>.05<br>2.41<br>2.26               | .00<br>.00<br>.00<br>2.02<br>3.13<br>1.06        | .00<br>.00<br>.00<br>4.24<br>4.57<br>1.93        | .00<br>.00<br>.00<br>3.56<br>2.21<br>1.78        | .00<br>.00<br>.00<br>3.76<br>1.88<br>1.06<br>.00 | .00<br>.00<br>.87<br>38.85<br>38.08<br>16.56         | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode<br>Extr | remely<br>erately<br>ghtly U<br>cral<br>ghtly S<br>erately<br>remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unstab<br>y Unsta<br>Jnstabl<br>Stable<br>y Stabl   | ole<br>able<br>le                |         |       |   |
|             | N .00 .00 .00 .2.89 1.64 .24 .00         | NNE .00 .00 .14 2.89 1.59 .19 .19 .19           | NE .00 .00 .00 .1.93 .1.01 .10 .00        | .00<br>.00<br>.00<br>2.46<br>1.64<br>.24<br>.00 | .00<br>.00<br>.00<br>1.69<br>2.65<br>.34<br>.48 | .00<br>.00<br>.19<br>1.69<br>2.17<br>.96<br>.19 | .00<br>.00<br>.00<br>1.59<br>1.20<br>.96<br>.10 | .00<br>.00<br>.82<br>1.73<br>.63<br>.29        | .00<br>.00<br>.14<br>2.99<br>3.42<br>2.12<br>.24 | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93<br>.67 | .00<br>.00<br>.19<br>2.21<br>2.99<br>2.07<br>1.20 | .00<br>.00<br>.05<br>2.41<br>2.26<br>.96<br>.29 | .00<br>.00<br>.00<br>2.02<br>3.13<br>1.06<br>.58 | .00<br>.00<br>.00<br>4.24<br>4.57<br>1.93<br>.77 | .00<br>.00<br>.00<br>3.56<br>2.21<br>1.78<br>.63 | .00<br>.00<br>.00<br>3.76<br>1.88<br>1.06<br>.00 | .00<br>.00<br>.87<br>38.85<br>38.08<br>16.56<br>5.63 | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode<br>Extr | remely erately ghtly U ral ghtly S erately remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unstab<br>y Unstabl<br>Stable<br>y Stable<br>Stable | ole<br>able<br>le                |         |       |   |
|             | N .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | .00<br>.00<br>.14<br>2.89<br>1.59<br>.19<br>.19 | NE .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | ENE .00 .00 .00 2.46 1.64 .24 .00  Speece       | .00<br>.00<br>.00<br>1.69<br>2.65<br>.34<br>.48 | .00<br>.00<br>.19<br>1.69<br>2.17<br>.96<br>.19 | .00<br>.00<br>.00<br>1.59<br>1.20<br>.96<br>.10 | .00<br>.00<br>.00<br>.82<br>1.73<br>.63<br>.29 | .00<br>.00<br>.14<br>2.99<br>3.42<br>2.12<br>.24 | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93<br>.67 | .00<br>.00<br>.19<br>2.21<br>2.99<br>2.07<br>1.20 | .00<br>.05<br>2.41<br>2.26<br>.96<br>.29        | .00<br>.00<br>.00<br>2.02<br>3.13<br>1.06<br>.58 | .00<br>.00<br>.00<br>4.24<br>4.57<br>1.93<br>.77 | .00<br>.00<br>.00<br>3.56<br>2.21<br>1.78<br>.63 | .00<br>.00<br>.00<br>3.76<br>1.88<br>1.06<br>.00 | .00<br>.00<br>.87<br>38.85<br>38.08<br>16.56<br>5.63 | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode<br>Extr | remely erately tral ghtly C erately remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unstab<br>y Unstabl<br>Stable<br>y Stabl<br>Stable  | oble<br>dble<br>e<br>de          |         |       |   |
|             | N .00 .00 .00 .2.89 1.64 .24 .00         | NNE .00 .00 .14 2.89 1.59 .19 .19 .19           | NE .00 .00 .00 .1.93 .1.01 .10 .00        | .00<br>.00<br>.00<br>2.46<br>1.64<br>.24<br>.00 | .00<br>.00<br>.00<br>1.69<br>2.65<br>.34<br>.48 | .00<br>.00<br>.19<br>1.69<br>2.17<br>.96<br>.19 | .00<br>.00<br>.00<br>1.59<br>1.20<br>.96<br>.10 | .00<br>.00<br>.82<br>1.73<br>.63<br>.29        | .00<br>.00<br>.14<br>2.99<br>3.42<br>2.12<br>.24 | .00<br>.00<br>.14<br>1.73<br>4.00<br>1.93<br>.67 | .00<br>.00<br>.19<br>2.21<br>2.99<br>2.07<br>1.20 | .00<br>.00<br>.05<br>2.41<br>2.26<br>.96<br>.29 | .00<br>.00<br>.00<br>2.02<br>3.13<br>1.06<br>.58 | .00<br>.00<br>.00<br>4.24<br>4.57<br>1.93<br>.77 | .00<br>.00<br>.00<br>3.56<br>2.21<br>1.78<br>.63 | .00<br>.00<br>.00<br>3.76<br>1.88<br>1.06<br>.00 | .00<br>.00<br>.87<br>38.85<br>38.08<br>16.56<br>5.63 | Extr<br>Mode<br>Slig<br>Neut<br>Slig<br>Mode<br>Extr | eremely year tell year tel | Unstab<br>y Unstabl<br>Stable<br>y Stable<br>Stable | oble<br>able<br>e<br>e<br>e<br>e |         |       |   |

.43 .53 .87 .91 1.35 .82 12.81

.72

1.59 1.88 1.16 1.16 1.20 1.78 1.16 .63 1.20 .96 1.44 .63 1.06 1.35 1.40 1.44 20.03

1.49 1.11 .67 .77 1.54 1.40 1.01 .48 1.54 1.20 2.41 1.25 1.30 3.23 2.94 2.17 24.51

.53 .00 .34 .91 .77 .67 .48 1.59 4.86 5.39 4.24 3.23 3.08 5.49 2.12 1.73 35.44

7.6 · 12.5 mph

12.6 - 18.5 mph

18.6 - 24.5 mph

> 24.5 mph

April-June 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

## NUMBER OF OBSERVATIONS = 2184 VALUES ARE PERCENT OCCURRENCE

| PEED        |              |              |            |            | -          |            | C.F. | ccr  | c    | C C1.1 | C1.1 | WSW  | W    | WNW  | NW   | NNW  | TOTAL | EU  | MU   | SU  | N     | SS   | MS   | E |
|-------------|--------------|--------------|------------|------------|------------|------------|------|------|------|--------|------|------|------|------|------|------|-------|-----|------|-----|-------|------|------|---|
| <b>LS</b> S | N            | NNE          | NE         | ENE        | E          | ESE        | SE   | SSE  | S    | SSW    | SW   | MOM  | *    | MINM | IN   | NAM  | IUIAL | LU  | rio  | 30  | "     | 33   | 113  |   |
| EU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   | .00 |      |     |       |      |      |   |
| MU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | . 00 | .00  | .00  | .00  | .00   |     | .00  |     |       |      |      |   |
| SU          | .00          | .00          | .00        | .00        | . 00       | .00        | . 00 | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      | .00 |       |      |      |   |
| N           | .00          | .00          | . 00       | . 00       | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | . 00 | .00   |     |      |     | .00   |      |      |   |
| SS          | .00          | .00          | . 00       | . 00       | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | . 00  |     |      |     |       | .00  |      |   |
| MS          | . 00         | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | . 00 | .00  | .00  | .00   |     |      |     |       |      | .00  |   |
| ES          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      |     |       |      |      |   |
| EU          | .00          | .00          | . 00       | .00        | . 00       | .00        | . 00 | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   | .00 |      |     |       |      |      |   |
| MU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | .00  |     |       |      |      |   |
| SU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      | .00 |       |      |      |   |
| N           | . 05         | .00          | . 05       | .00        | .05        | .00        | .00  | .00  | . 05 | . 05   | .00  | .00  | .00  | .00  | . 05 | . 05 | .32   |     |      |     | .32   |      |      |   |
| SS          | . 05         | .00          | .00        | .09        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | . 05 | . 18  |     |      |     |       | . 18 |      |   |
| MS          | .05          | .05          | .00        | . 00       | .00        | .00        | .00  | . 00 | . 05 | .00    | .00  | .00  | .09  | .09  | . 05 | .00  | .37   |     |      |     |       |      | .37  |   |
| ES          | .00          | .00          | . 05       | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | . 05 | . 05 | . 00 | .09  | .00  | . 23  |     |      |     |       |      |      |   |
| EU          | . 00         | .00          | . 00       | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | . 00  | .00 |      |     |       |      |      |   |
| MU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | .00  |     |       |      |      |   |
|             | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | . 00 | .00  | .00   |     |      | .00 |       |      |      |   |
| SU          | .64          | .37          | .82        | .50        | .27        | .32        | .41  | .37  | . 14 | .41    | .27  | .27  | . 50 | .32  | .32  | .37  | 6.32  |     |      |     | 6.32  |      |      |   |
| N<br>cc     | .05          | .05          | .05        | .14        | .09        | .00        | .09  | .14  | .09  | .00    | . 14 | .09  | . 05 | .09  | . 05 | .09  | 1.19  |     |      |     |       | 1.19 |      |   |
| SS<br>MS    | .05          | .00          | .00        | .00        | .00        | .09        | .05  | .05  | .09  | .05    | .09  | .09  | . 05 | .09  | .09  | . 05 | .82   |     |      |     |       |      | . 82 |   |
| ES          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .05  | .00  | .00    | . 18 | .05  | .05  | .09  | . 05 | .00  | .46   |     |      |     |       |      |      |   |
|             |              |              | 20         | 00         | 00         | 00         | 00   | .00  | .00  | . 00   | . 00 | . 00 | .00  | .00  | .00  | .00  | .00   | .00 |      |     |       |      |      |   |
| EU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  |      | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | .00  |     |       |      |      |   |
| MU          | .00          | .00          | .00        | .00        | .00        | .00        | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     |      | .00 |       |      |      |   |
| SU          | .00          | .00          | .00        | .00        | .00        | .00        | .32  | .60  | 1.01 | .69    | .96  | .69  | .32  | .41  | . 27 | .87  | 10.39 |     |      |     | 10.39 |      |      |   |
| N           | .96          | 1.51         | .46        | .27        | .55        | .50<br>.46 | .32  | .41  | .32  | . 14   | .41  | . 14 | .23  | .32  | .00  | .23  | 4.53  |     |      |     |       | 4.53 |      |   |
| SS          | . 14         | .41          | .41<br>.05 | .27<br>.05 | .37<br>.14 | .09        | .23  | .09  | .23  | .18    | .09  | . 05 | . 14 | .32  | .23  | .09  | 2.11  |     |      |     |       |      | 2.11 |   |
| MS .        | . 05         | . 09<br>. 00 | .00        | .00        | .00        | .00        | .00  | . 05 | .05  | .00    | .00  | . 14 | .00  | .00  | .00  | .00  | .23   |     |      |     |       |      |      |   |
| ES          | . 00         | .00          | .00        | .00        | .00        | .00        | .00  | .03  | .03  | .00    | .00  | •••  | ,,,, |      |      |      |       |     |      |     |       |      |      |   |
| EU          | . 00         | .00          | . 00       |            | .00        |            | .00  | .00  | .00  | .00    | .00  | .00  | .00  | .00  | .00  | .00  | .00   | .00 | . 00 |     |       |      |      |   |
| MU          | . 00         | . 00         | .00        | . 00       | .00        |            | .00  | .00  | .00  |        | .00  | .00  | .00  | .00  | .00  | .00  | .00   |     | . 00 | .27 |       |      |      |   |
| SU          | .00          | .00          | . 09       | .00        | .00        |            | .00  | .05  | . 14 |        | .00  | .00  | .00  | .00  | .00  | .00  | .27   |     |      | .21 | 13.60 |      |      |   |
| N           | . <b>9</b> 2 | 1.14         |            |            | .87        |            | .41  |      | . 64 |        |      | .92  | . 73 | .87  | .87  | 1.05 | 13.60 |     |      |     | 13.00 | 7.14 |      |   |
| SS          | . 32         | .41          | .37        | . 96       | . 69       |            | . 23 | . 14 | . 55 |        | .27  | . 50 | . 50 | .50  | .55  | .46  | 7.14  |     |      |     |       | 7.14 | 3.02 |   |
| B MS        | .23          | . 23         | .09        | .00        | . 05       |            | .27  | . 23 | . 14 |        | . 14 | . 14 | . 32 |      | .32  | .09  | 3.02  |     |      |     |       |      | 3.02 |   |
| ES          | .00          | .00          | . 00       | .00        | .00        | . 05       | .00  | . 00 | . 14 | . 18   | . 14 | . 05 | . 14 | .09  | . 05 | . 00 | . 82  |     |      |     |       |      |      |   |

### ComEd LASALLE STATION 375 ft. WIND SPEED and WIND DIRECTION

April-June 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

> 24.5 mph

| PEED  |                                          | <b>.</b>                                        |                                             |                                                             |                                                 |                                                 | - WIND                                         | DIRECT                                          | TION C                                                | LASSES                                           |                                                  |                                                        |                                                 | · · · · · ·                                      |                                                  |                                                 |                                                       |                                                                                                  | STABILITY C                                                                    | LASSES | ,     |     |
|-------|------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|-------|-----|
| CLASS | N                                        | NNE                                             | NE                                          | ENE                                                         | E                                               | ESE                                             | SE                                             | SSE                                             | S                                                     | SSW                                              | SW                                               | WSW                                                    | W                                               | WNW                                              | NW                                               | NNW                                             | TOTAL                                                 | EU MU                                                                                            | SU N                                                                           | SS     | MS    | ES  |
| EU    | . 00                                     | . 00                                            | .00                                         | . 00                                                        | . 00                                            | .00                                             | . 00                                           | .00                                             | .00                                                   | .00                                              | .00                                              | .00                                                    | .00                                             | .00                                              | .00                                              | . 00                                            | .00                                                   | .00                                                                                              |                                                                                |        |       |     |
| LMU   | .00                                      | .00                                             | .00                                         | .00                                                         | .00                                             | .00                                             | .00                                            | .00                                             | .00                                                   | .00                                              | .05                                              | .00                                                    | .00                                             | . 05                                             | .00                                              | . 00                                            | . 09                                                  | .09                                                                                              |                                                                                |        |       |     |
| SU    | .00                                      | . 05                                            | . 14                                        | .00                                                         | .00                                             | .00                                             | .00                                            | . 05                                            | . 18                                                  | . 60                                             | . 18                                             | . 09                                                   | .00                                             | . 14                                             | . 14                                             | .00                                             | 1.56                                                  |                                                                                                  | 1.56                                                                           |        |       |     |
| N     | .46                                      | 1.05                                            | .87                                         | 1.42                                                        | . 27                                            | .05                                             | . 05                                           | . 18                                            | .46                                                   | 1.14                                             | 1.37                                             | 1.14                                                   | .41                                             | 1.05                                             | 1.19                                             | . 73                                            | 11.86                                                 |                                                                                                  | 11.86                                                                          |        |       |     |
| SS    | .23                                      | .09                                             | .46                                         | .37                                                         | . 14                                            | . 50                                            | . 18                                           | .37                                             | . 69                                                  | . 92                                             | .69                                              | . 69                                                   | . 23                                            | . 18                                             | .46                                              | .23                                             | 6.41                                                  |                                                                                                  |                                                                                | 6.41   |       |     |
| MS    | .09                                      | .05                                             | . 09                                        | . 05                                                        | . 09                                            | . 05                                            | . 00                                           | .32                                             | .41                                                   | .60                                              | .37                                              | .27                                                    | . 23                                            | . 37                                             | .41                                              | .09                                             | 3.48                                                  |                                                                                                  |                                                                                |        | 3.48  |     |
| ES    | . 05                                     | .00                                             | .00                                         | .00                                                         | .00                                             | .00                                             | .27                                            | . 05                                            | . 05                                                  | .05                                              | .05                                              | . 05                                                   | . 14                                            | . 05                                             | . 05                                             | .00                                             | .78                                                   |                                                                                                  |                                                                                |        |       | .7  |
| EU    | .00                                      | .00                                             | .00                                         | .00                                                         | .00                                             | .00                                             | .00                                            | .00                                             | .00                                                   | .00                                              | .00                                              | .00                                                    | .00                                             | .00                                              | .00                                              | . 00                                            | .00                                                   | .00                                                                                              |                                                                                |        |       |     |
| MU    | .00                                      | .00                                             | .00                                         | .00                                                         | .00                                             | .00                                             | .00                                            | .05                                             | .05                                                   | .05                                              | .09                                              | .00                                                    | .00                                             | .00                                              | .00                                              | .00                                             | . 23                                                  | .23                                                                                              |                                                                                |        |       |     |
| SU    | . 00                                     | . 05                                            | . 00                                        | .00                                                         | .00                                             | .00                                             | .00                                            | . 05                                            | .09                                                   | . 18                                             | .23                                              | . 05                                                   | .00                                             | . 00                                             | . 05                                             | .00                                             | . 69                                                  |                                                                                                  | .69                                                                            |        |       |     |
| N     | . 60                                     | .09                                             | .69                                         | .23                                                         | . 09                                            | . 55                                            | . 05                                           | . 18                                            | .50                                                   | . 92                                             | 1.42                                             | . 55                                                   | . 37                                            | 1.60                                             | 1.33                                             | 1.01                                            | 10.16                                                 |                                                                                                  | 10.16                                                                          |        |       |     |
| SS    | .05                                      | .09                                             | . 14                                        | .00                                                         | . 09                                            | .32                                             | . 14                                           | .37                                             | . 73                                                  | 2.84                                             | 2.61                                             | .46                                                    | . 37                                            | . 73                                             | . 18                                             | .00                                             | 9.11                                                  |                                                                                                  |                                                                                | 9.11   |       |     |
| MS    | .00                                      | .00                                             | . 05                                        | .00                                                         | .00                                             | . 05                                            | . 14                                           | . 27                                            | .37                                                   | . 50                                             | . 82                                             | . 37                                                   | . 05                                            | . 00                                             | .00                                              | .00                                             | 2.61                                                  |                                                                                                  |                                                                                |        | 2.61  |     |
| ES    | .00                                      | .00                                             | .00                                         | . 00                                                        | . 00                                            | .00                                             | . 09                                           | . 18                                            | . 09                                                  | .37                                              | . 18                                             | .09                                                    | .00                                             | .00                                              | .00                                              | .00                                             | 1.01                                                  |                                                                                                  |                                                                                |        |       | 1.0 |
| тот   | 4.95                                     | 5.72                                            | 5.91                                        | 5.22                                                        | 3.75                                            | 3.71                                            | 3.21                                           | 4.53                                            | 7.23                                                  | 11.36                                            | 12.64                                            | 6.91                                                   | 4.95                                            | 7.69                                             | 6.78                                             | 5.45                                            | 100.00                                                | .00 .32                                                                                          | 2.52 52.66                                                                     | 28.57  | 12.41 | 3.  |
| 114-4 | Niman                                    | ++                                              | C+ah                                        | .:1:+u                                                      |                                                 |                                                 |                                                |                                                 |                                                       |                                                  |                                                  |                                                        |                                                 |                                                  |                                                  |                                                 |                                                       |                                                                                                  |                                                                                |        |       |     |
| Wind  |                                          | tion b                                          |                                             |                                                             | F                                               | FSF                                             | SF                                             | SSE                                             | S                                                     | SSW                                              | SW                                               | WSW                                                    | W                                               | MNM                                              | NW                                               | NNW                                             | TOTAL                                                 | -STABILIT                                                                                        | Y CLASSES-                                                                     |        |       |     |
| Wind  | N                                        | NNE                                             | NE                                          | ENE                                                         | E                                               | ESE                                             | SE                                             | SSE                                             | S                                                     | SSW                                              | SW                                               | WSW                                                    |                                                 |                                                  |                                                  |                                                 |                                                       |                                                                                                  |                                                                                |        |       |     |
| ind   | N<br>.00                                 | .00                                             | NE<br>.00                                   | ENE                                                         | .00                                             | .00                                             | .00                                            | . 00                                            | .00                                                   | .00                                              | .00                                              | .00                                                    | . 00                                            | .00                                              | .00                                              | . 00                                            | .00                                                   | Extremely                                                                                        | / Unstable                                                                     |        |       |     |
| Wind  | N<br>.00<br>.00                          | .00<br>.00                                      | NE<br>.00<br>.00                            | .00<br>.00                                                  | .00                                             | .00                                             | .00                                            | .00                                             | .00<br>.05                                            | .00<br>.05                                       | .00<br>.14                                       | .00                                                    | .00                                             | .00                                              | .00                                              | .00                                             | .00<br>.32                                            | Extremely<br>Moderatel                                                                           | / Unstable<br>y Unstable                                                       |        |       |     |
| Wind  | N<br>.00<br>.00                          | .00<br>.00<br>.09                               | .00<br>.00<br>.23                           | .00<br>.00                                                  | .00<br>.00                                      | .00<br>.00<br>.00                               | .00                                            | .00<br>.05                                      | .00<br>.05<br>.41                                     | .00<br>.05<br>.78                                | .00<br>.14<br>.41                                | .00<br>.00                                             | .00                                             | .00<br>.05                                       | .00                                              | . 00                                            | .00                                                   | Extremely                                                                                        | / Unstable<br>y Unstable                                                       |        |       |     |
| Wind  | N .00 .00 .00 .00 3.62                   | .00<br>.00<br>.09<br>4.17                       | NE .00 .00 .23 3.94                         | .00<br>.00<br>.00                                           | .00<br>.00<br>.00<br>2.11                       | .00<br>.00<br>.00                               | .00<br>.00<br>.00                              | .00<br>.05<br>.14<br>1.65                       | .00<br>.05<br>.41<br>2.79                             | .00<br>.05<br>.78<br>4.03                        | .00<br>.14<br>.41<br>5.91                        | .00<br>.00<br>.14<br>3.57                              | .00                                             | .00<br>.05<br>.14<br>4.26                        | .00<br>.00                                       | .00                                             | .00<br>.32<br>2.52                                    | Extremely<br>Moderatel<br>Slightly                                                               | / Unstable<br>y Unstable<br>Unstable                                           |        |       |     |
| Wind  | N .00 .00 .00 3.62 .82                   | .00<br>.00<br>.09<br>4.17<br>1.05               | NE .00 .00 .23 3.94 1.42                    | .00<br>.00                                                  | .00<br>.00                                      | .00<br>.00<br>.00                               | .00                                            | .00<br>.05<br>.14<br>1.65                       | .00<br>.05<br>.41<br>2.79                             | .00<br>.05<br>.78<br>4.03<br>4.40                | .00<br>.14<br>.41                                | .00<br>.00<br>.14<br>3.57                              | .00<br>.00<br>.00<br>2.34                       | .00<br>.05<br>.14<br>4.26<br>1.83                | .00<br>.00<br>.18<br>4.03                        | .00<br>.00<br>.00<br>4.08                       | .00<br>.32<br>2.52<br>52.66<br>28.57                  | Extremely<br>Moderatel<br>Slightly<br>Neutral                                                    | v Unstable<br>y Unstable<br>Unstable<br>Stable                                 |        |       |     |
| Wind  | N .00 .00 .00 .00 3.62                   | .00<br>.00<br>.09<br>4.17                       | NE .00 .00 .23 3.94                         | .00<br>.00<br>.00<br>.3.30                                  | .00<br>.00<br>.00<br>2.11<br>1.37               | .00<br>.00<br>.00<br>1.65<br>1.47               | .00<br>.00<br>.00<br>1.24<br>.92               | .00<br>.05<br>.14<br>1.65<br>1.42               | .00<br>.05<br>.41<br>2.79<br>2.38                     | .00<br>.05<br>.78<br>4.03<br>4.40                | .00<br>.14<br>.41<br>5.91<br>4.12                | .00<br>.00<br>.14<br>3.57<br>1.88                      | .00<br>.00<br>.00<br>2.34<br>1.37               | .00<br>.05<br>.14<br>4.26<br>1.83                | .00<br>.00<br>.18<br>4.03<br>1.24                | .00<br>.00<br>.00<br>4.08<br>1.05               | .00<br>.32<br>2.52<br>52.66<br>28.57                  | Extremely Moderatel Slightly Neutral Slightly                                                    | y Unstable y Unstable Unstable Stable y Stable                                 |        |       |     |
|       | N .00 .00 .00 .3.62 .82 .46 .05          | .00<br>.00<br>.09<br>4.17<br>1.05               | NE .00 .00 .23 3.94 1.42 .27 .05            | .00<br>.00<br>.00<br>3.30<br>1.83<br>.09                    | .00<br>.00<br>.00<br>2.11<br>1.37<br>.27        | .00<br>.00<br>.00<br>1.65<br>1.47               | .00<br>.00<br>.00<br>1.24<br>.92               | .00<br>.05<br>.14<br>1.65<br>1.42               | .00<br>.05<br>.41<br>2.79<br>2.38<br>1.28             | .00<br>.05<br>.78<br>4.03<br>4.40<br>1.51        | .00<br>.14<br>.41<br>5.91<br>4.12<br>1.51        | .00<br>.00<br>.14<br>3.57<br>1.88<br>.92               | .00<br>.00<br>.00<br>2.34<br>1.37               | .00<br>.05<br>.14<br>4.26<br>1.83<br>1.19        | .00<br>.00<br>.18<br>4.03<br>1.24<br>1.10        | .00<br>.00<br>.00<br>4.08<br>1.05               | .00<br>.32<br>2.52<br>52.66<br>28.57<br>12.41         | Extremely Moderatel Slightly Neutral Slightly Moderatel                                          | y Unstable y Unstable Unstable Stable y Stable                                 |        |       |     |
|       | N .00 .00 .00 .3.62 .82 .46 .05          | .00<br>.00<br>.09<br>4.17<br>1.05<br>.41        | NE .00 .00 .23 3.94 1.42 .27 .05            | .00<br>.00<br>.00<br>3.30<br>1.83<br>.09<br>.00             | .00<br>.00<br>.00<br>2.11<br>1.37<br>.27        | .00<br>.00<br>.00<br>1.65<br>1.47               | .00<br>.00<br>.00<br>1.24<br>.92               | .00<br>.05<br>.14<br>1.65<br>1.42               | .00<br>.05<br>.41<br>2.79<br>2.38<br>1.28             | .00<br>.05<br>.78<br>4.03<br>4.40<br>1.51        | .00<br>.14<br>.41<br>5.91<br>4.12<br>1.51        | .00<br>.00<br>.14<br>3.57<br>1.88<br>.92               | .00<br>.00<br>.00<br>2.34<br>1.37               | .00<br>.05<br>.14<br>4.26<br>1.83<br>1.19        | .00<br>.00<br>.18<br>4.03<br>1.24<br>1.10        | .00<br>.00<br>.00<br>4.08<br>1.05<br>.32<br>.00 | .00<br>.32<br>2.52<br>52.66<br>28.57<br>12.41         | Extremely<br>Moderatel<br>Slightly<br>Neutral<br>Slightly<br>Moderatel<br>Extremely              | y Unstable y Unstable Unstable Stable y Stable                                 |        |       |     |
|       | N .00 .00 .00 3.62 .82 .46 .05           | .00<br>.00<br>.09<br>4.17<br>1.05<br>.41<br>.00 | NE .00 .00 .23 .3.94 .1.42 .27 .05          | .00<br>.00<br>.00<br>3.30<br>1.83<br>.09<br>.00             | .00<br>.00<br>.00<br>2.11<br>1.37<br>.27<br>.00 | .00<br>.00<br>.00<br>1.65<br>1.47<br>.55<br>.05 | .00<br>.00<br>.00<br>1.24<br>.92<br>.69<br>.37 | .00<br>.05<br>.14<br>1.65<br>1.42<br>.96<br>.32 | .00<br>.05<br>.41<br>2.79<br>2.38<br>1.28<br>.32      | .00<br>.05<br>.78<br>4.03<br>4.40<br>1.51<br>.60 | .00<br>.14<br>.41<br>5.91<br>4.12<br>1.51<br>.55 | .00<br>.00<br>.14<br>3.57<br>1.88<br>.92<br>.41        | .00<br>.00<br>.00<br>2.34<br>1.37<br>.87        | .00<br>.05<br>.14<br>4.26<br>1.83<br>1.19<br>.23 | .00<br>.00<br>.18<br>4.03<br>1.24<br>1.10<br>.23 | .00<br>.00<br>.00<br>4.08<br>1.05<br>.32<br>.00 | .00<br>.32<br>2.52<br>52.66<br>28.57<br>12.41<br>3.53 | Extremely<br>Moderatel<br>Slightly<br>Neutral<br>Slightly<br>Moderatel<br>Extremely              | y Unstable y Unstable Unstable Stable ly Stable y Stable y Stable              |        |       |     |
|       | N .00 .00 .00 .3.62 .46 .05              | .00<br>.00<br>.09<br>4.17<br>1.05<br>.41<br>.00 | NE .00 .00 .23 3.94 1.42 .27 .05            | .00<br>.00<br>.00<br>3.30<br>1.83<br>.09<br>.00             | .00<br>.00<br>.00<br>2.11<br>1.37<br>.27<br>.00 | .00<br>.00<br>.00<br>1.65<br>1.47<br>.55<br>.05 | .00<br>.00<br>.00<br>1.24<br>.92<br>.69<br>.37 | .00<br>.05<br>.14<br>1.65<br>1.42<br>.96<br>.32 | .00<br>.05<br>.41<br>2.79<br>2.38<br>1.28<br>.32      | .00<br>.05<br>.78<br>4.03<br>4.40<br>1.51<br>.60 | .00<br>.14<br>.41<br>5.91<br>4.12<br>1.51<br>.55 | .00<br>.00<br>.14<br>3.57<br>1.88<br>.92<br>.41        | .00<br>.00<br>.00<br>2.34<br>1.37<br>.87<br>.37 | .00<br>.05<br>.14<br>4.26<br>1.83<br>1.19<br>.23 | .00<br>.00<br>.18<br>4.03<br>1.24<br>1.10<br>.23 | .00<br>.00<br>.00<br>4.08<br>1.05<br>.32<br>.00 | .00<br>.32<br>2.52<br>52.66<br>28.57<br>12.41<br>3.53 | Extremely Moderatel Slightly Neutral Slightly Moderatel Extremely                                | y Unstable y Unstable Unstable Stable ly Stable y Stable y Stable              |        |       |     |
|       | N .00 .00 .00 .3.62 .82 .46 .05          | .00<br>.00<br>.09<br>4.17<br>1.05<br>.41<br>.00 | NE .00 .00 .23 3.94 1.42 .27 .05 NE .00 .00 | .00<br>.00<br>.00<br>3.30<br>1.83<br>.09<br>.00             | .00<br>.00<br>.00<br>2.11<br>1.37<br>.27<br>.00 | .00<br>.00<br>.00<br>1.65<br>1.47<br>.55<br>.05 | .00<br>.00<br>.00<br>1.24<br>.92<br>.69<br>.37 | .00<br>.05<br>.14<br>1.65<br>1.42<br>.96<br>.32 | .00<br>.05<br>.41<br>2.79<br>2.38<br>1.28<br>.32      | .00<br>.05<br>.78<br>4.03<br>4.40<br>1.51<br>.60 | .00<br>.14<br>.41<br>5.91<br>4.12<br>1.51<br>.55 | .00<br>.00<br>.14<br>3.57<br>1.88<br>.92<br>.41        | .00<br>.00<br>.00<br>2.34<br>1.37<br>.87<br>.37 | .00<br>.05<br>.14<br>4.26<br>1.83<br>1.19<br>.23 | .00<br>.00<br>.18<br>4.03<br>1.24<br>1.10<br>.23 | .00<br>.00<br>.00<br>4.08<br>1.05<br>.32<br>.00 | .00<br>.32<br>2.52<br>52.66<br>28.57<br>12.41<br>3.53 | Extremely Moderatel Slightly Neutral Slightly Moderatel Extremely  WIND SPE  C A L  0.8 -        | y Unstable y Unstable Unstable Stable y Stable y Stable of Stable              |        |       |     |
|       | N .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | .00<br>.00<br>.09<br>4.17<br>1.05<br>.41<br>.00 | NE .00 .00 .23 .3.94 .1.42 .27 .05          | .00<br>.00<br>.00<br>3.30<br>1.83<br>.09<br>.00<br>1 Speece | .00<br>.00<br>.00<br>2.11<br>1.37<br>.27<br>.00 | .00<br>.00<br>.00<br>1.65<br>1.47<br>.55<br>.05 | .00<br>.00<br>.00<br>1.24<br>.92<br>.69<br>.37 | .00<br>.05<br>.14<br>1.65<br>1.42<br>.96<br>.32 | .00<br>.05<br>.41<br>2.79<br>2.38<br>1.28<br>.32<br>S | .00<br>.05<br>.78<br>4.03<br>4.40<br>1.51<br>.60 | .00<br>.14<br>.41<br>5.91<br>4.12<br>1.51<br>.55 | .00<br>.00<br>.14<br>3.57<br>1.88<br>.92<br>.41<br>WSW | .00<br>.00<br>.00<br>2.34<br>1.37<br>.87<br>.37 | .00<br>.05<br>.14<br>4.26<br>1.83<br>1.19<br>.23 | .00<br>.00<br>.18<br>4.03<br>1.24<br>1.10<br>.23 | .00<br>.00<br>.00<br>4.08<br>1.05<br>.32<br>.00 | .00<br>.32<br>2.52<br>52.66<br>28.57<br>12.41<br>3.53 | Extremely Moderatel Slightly Neutral Slightly Moderatel Extremely  ·WIND SPE  C A L  0.8 - 3.6 - | y Unstable yy Unstable Unstable Stable y Stable y Stable to CLASSES- M 3.5 mph |        |       |     |

1.47 1.79 1.60 1.83 1.60 .73 .92 .73 1.60 1.69 2.43 1.60 1.69 1.79 1.79 1.60 24.86 12.6 - 18.5 mph

.82 1.24 1.56 1.83 .50 .60 .50 .96 1.79 3.30 2.70 2.24 1.01 1.83 2.24 1.05 24.18 18.6 - 24.5 mph

.64 .23 .87 .23 .18 .92 .41 1.10 1.83 4.85 5.36 1.51 .78 2.34 1.56 1.01 23.81

July-September 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

## NUMBER OF OBSERVATIONS - 2201 VALUES ARE PERCENT OCCURRENCE

| PEED           |      |      |      | - · · · · · |      |      | WIND | DIRECT | TION CL | ASSES |      |      |      |      |      |      |       | • • • • |      | STABI | LITY C | LASSES |      |   |
|----------------|------|------|------|-------------|------|------|------|--------|---------|-------|------|------|------|------|------|------|-------|---------|------|-------|--------|--------|------|---|
| LASS           | N    | NNE  | NE   | ENE         | Ε    | ESE  | SE   | SSE    | S       | SSW   | SW   | WSW  | W    | WNW  | NW   | NNW  | TOTAL | EU      | MU   | SU    | N      | SS     | MS   | Ε |
| EU             | .00  | . 00 | . 00 | . 00        | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   | .00     |      |       |        |        |      |   |
| MU             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | . 00 | .00  | .00  | .00  | .00  | .00  | .00   |         | .00  |       |        |        |      |   |
| SU             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   |         |      | .00   |        |        |      |   |
| N              | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   |         |      |       | .00    |        |      |   |
| SS             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   |         |      |       |        | .00    |      |   |
| MS             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   |         |      |       |        |        | .00  |   |
| ES             | .00  | .00  | .00  | .00         | .00  | .00  | . 00 | .00    | .00     | .00   | .00  | .00  | .00  | .00  | . 00 | .00  | .00   |         |      |       |        |        |      |   |
|                |      |      |      |             |      |      |      |        |         |       |      |      |      |      |      |      |       |         |      |       |        |        |      |   |
| EU             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   | .00     |      |       |        |        |      |   |
| <del>1</del> U | .00  | .00  | .00  | .00         | . 00 | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | . 00 | .00  | .00  | .00   |         | .00  |       |        |        |      |   |
| SU             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | . 00 | .00   |         |      | . 00  |        |        |      |   |
| N              | .00  | . 00 | .00  | .00         | .00  | .05  | .05  | .05    | .00     | .00   | .00  | .00  | .00  | .00  | .05  | . 00 | . 18  |         |      |       | . 18   |        |      |   |
| SS             | .00  | .00  | .00  | . 09        | . 05 | .00  | .09  | .00    | .00     | .00   | .00  | .00  | . 05 | .00  | .00  | .00  | . 27  |         |      |       |        | .27    |      |   |
| <b>4</b> S     | . 00 | .00  | .00  | .00         | .00  | .00  | .00  | .09    | .00     | .00   | .09  | .00  | .05  | .00  | .00  | . 05 | . 27  |         |      |       |        |        | .27  |   |
| ES             | . 00 | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | . 00 | .00  | . 00  |         |      |       |        |        |      |   |
|                |      |      |      |             |      |      |      |        |         |       |      |      |      |      |      |      |       |         |      |       |        |        |      |   |
| U              | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .00  | . 00 | .00  | .00  | .00   | .00     |      |       |        |        |      |   |
| <b>4</b> U     | .00  | .00  | .00  | .00         | .00  | .00  | .00  | . 00   | .00     | .00   | . 00 | .00  | .00  | .00  | .00  | .00  | .00   |         | .00  |       |        |        |      |   |
| SU             | .00  | .00  | .00  | .00         | .00  | .00  | .00  | .00    | . 00    | . 00  | .00  | .00  | .00  | .00  | .00  | .00  | .00   |         |      | . 00  |        |        |      |   |
| N              | .32  | .41  | .82  | .27         | . 32 | . 50 | . 45 | . 27   | . 18    | . 18  | . 09 | .23  | . 05 | . 23 | . 18 | . 18 | 4.68  |         |      |       | 4.68   |        |      |   |
| SS             | .23  | . 59 | . 14 | . 23        | . 45 | . 14 | .00  | .09    | . 05    | .00   | .00  | .09  | . 14 | . 05 | .05  | . 09 | 2.32  |         |      |       |        | 2.32   | 1 00 |   |
| 15             | .00  | . 05 | . 09 | . 05        | . 23 | .05  | .00  | . 05   | .05     | .00   | .00  | .23  | .23  | .09  | .00  | .00  | 1.09  |         |      |       |        |        | 1.09 |   |
| ES             | . 00 | . 00 | . 00 | .00         | .00  | .00  | .00  | .00    | .00     | .00   | .00  | .00  | .05  | .05  | .00  | .00  | . 09  |         |      |       |        |        |      |   |
| ΞU             | .00  | .00  | .00  | .00         | . 00 | .00  | .00  | .00    | .00     | .00   | . 00 | .00  | .00  | .00  | .00  | .00  | . 00  | .00     |      |       |        |        |      |   |
| MU             | .00  | .00  | .00  | .00         | .00  | .00  | . 00 | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  | .00   |         | .00  |       |        |        |      |   |
| SU             | .00  | .05  | .00  | .09         | . 05 | . 05 | .00  | .00    | .00     | .00   | . 14 | .00  | . 05 | .00  | .00  | .00  | .41   |         |      | .41   |        |        |      |   |
| N              | 2.00 | 2.00 | 1.09 | 1.36        | 1.36 | . 95 | .68  | .82    | 1.27    | . 73  | .77  | .64  | . 91 | 1.27 | 1.14 | 1.14 | 18.13 |         |      |       | 18.13  |        |      |   |
| SS             | . 14 | .82  | .41  | . 95        | . 55 | .41  | .45  | . 18   | . 05    | . 18  | . 27 | .23  | .45  | .32  | .32  | .32  | 6.04  |         |      |       |        | 6.04   |      |   |
| MS             | . 27 | . 23 | . 09 | .09         | .23  | .23  | .09  | .27    | .23     | .09   | .23  | . 18 | . 18 | . 18 | . 23 | .09  | 2.91  |         |      |       |        |        | 2.91 |   |
| S              | .00  | .00  | .00  | .00         | .00  | .00  | .05  | . 14   | . 14    | .00   | . 14 | .09  | .00  | . 05 | .00  | .00  | . 59  |         |      |       |        |        |      |   |
|                |      |      |      |             |      |      |      |        |         |       |      |      |      |      | ••   |      |       | ^^      |      |       |        |        |      |   |
| ΕU             | .00  | .00  | .00  | .00         | .00  | . 00 | .00  | .00    | .00     | .00   | .00  | .00  | .00  | .00  | .00  | .00  |       | .00     | ••   |       |        |        |      |   |
| MU             | .00  | .00  | .05  | . 05        | . 00 | .00  | .00  | .00    | .00     | . 05  | . 05 | .00  | .00  | .00  | .00  | .00  | . 18  |         | . 18 |       |        |        |      |   |
| SU             | .09  | . 05 | .09  | . 05        | .00  | . 36 | . 00 | . 00   | . 32    | . 14  | . 18 | . 05 | .00  | . 09 | .09  | .00  | 1.50  |         |      | 1.50  |        |        |      |   |
| N              | 1.18 |      | 2.50 | 2.09        | . 27 | . 55 | . 59 | .32    | . 73    | 1.73  | 1.23 | 1.09 | 1.09 | .32  | 1.04 | 1.00 | 17.40 |         |      |       | 17.40  | 7.07   |      |   |
| SS             | . 18 | .86  | . 64 | . 64        | 1.14 | . 27 | . 23 | .27    | . 45    | .59   | .36  | .45  | . 14 | .36  | .27  | . 18 | 7.04  |         |      |       |        | 7.04   | 2 60 |   |
| 45             | .23  | . 05 | . 09 | .00         | . 27 | . 23 | . 32 | .09    | . 50    | . 36  | . 18 | . 23 | . 23 | .50  | .27  | . 14 | 3.68  |         |      |       |        |        | 3.68 |   |
| ES             | .00  | .00  | .00  | .00         | .00  | .09  | . 14 | .41    | .45     | .05   | .00  | . 18 | .00  | .00  | .00  | .00  | 1.32  |         |      |       |        |        |      |   |

### COMED LASALLE STATION 375 ft. WIND SPEED and WIND DIRECTION

July-September 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

> 12.6 · 18.5 mph 18.6 · 24.5 mph

> 24.5 mph

| SPEED       |              |            |                  | <b></b> .              |            |            | - WIND | DIREC | TION C       | LASSES       |              | <i>.</i> . |      |            |      |      |            |      |        | STABI            | LITY (      | CLASSES | · · · · · |      |
|-------------|--------------|------------|------------------|------------------------|------------|------------|--------|-------|--------------|--------------|--------------|------------|------|------------|------|------|------------|------|--------|------------------|-------------|---------|-----------|------|
| CLASS       | N            | NNE        | NE               | ENE                    | Ε          | ESE        | SE     | SSE   | \$           | SSW          | SW           | WSW        | W    | WNW        | NW   | NNW  | TOTAL      | EU   | MU     | SU               | N           | SS      | MS        | ES   |
|             |              |            |                  |                        |            |            |        |       |              | ••           |              | 20         | 00   | 00         | 00   | 00   | O.F.       | 0E   |        |                  |             |         |           |      |
| EU          | .00          | .00        | .00              | .00                    | .00        | .00        | .00    | .00   | .05          | .00          | .00          | .00        | .00  | .00<br>.00 | .00  | .00  | .05<br>.18 | . 05 | . 18   |                  |             |         |           |      |
| 1 MU        | .00          | .00        | .00              | .00                    | .00        | .00        | .00    | .00   | . 09<br>. 18 | . 05<br>. 09 | . 05<br>. 14 | .00        | .00  | .00        | .00  | .00  | .64        |      | . 10   | . 64             |             |         |           |      |
| 9 SU<br>• N | . 09<br>. 45 | .00<br>.27 | .00<br>1.14      | .05<br>.86             | .00        | .00<br>.18 | .27    | .18   | .41          | .55          | .14          | .36        | .05  | .05        | .36  | .55  | 5.82       |      |        |                  | 5.82        |         |           |      |
| 2 55        | .32          | .27        | .09              | .36                    | .59        | .55        | .50    | .41   | 1.14         | 1.36         | .55          | .45        | .23  | .36        | .09  | .27  | 7.54       |      |        |                  |             | 7.54    |           |      |
| 4 MS        | . 14         | .00        | .00              | .00                    | .05        | .32        | .23    | .09   | .73          | .73          | .59          | .41        | . 18 | .32        | . 27 | . 14 | 4.18       |      |        |                  |             |         | 4.18      |      |
| ES          | .00          | .00        | .00              | .00                    | .00        | .00        | . 18   | . 18  | .27          | .50          | .27          | .00        | .00  | .00        | .00  | .00  | 1.41       |      |        |                  |             |         |           | 1.41 |
|             |              |            |                  |                        |            |            |        |       |              |              |              |            |      |            |      |      |            |      |        |                  |             |         |           |      |
| EU          | .00          | .00        | .00              | .00                    | .00        | .00        | .00    | .00   | .00          | .00          | .00          | . 00       | .00  | .00        | . 00 | .00  | .00        | .00  |        |                  |             |         |           |      |
| G MU        | .00          | .00        | .00              | .00                    | .00        | .00        | .00    | .00   | .00          | .00          | .00          | .00        | .00  | .00        | .00  | .00  | .00        |      | .00    |                  |             |         |           |      |
| T SU        | .00          | .00        | .00              | .00                    | .00        | .00        | .00    | .00   | . 00         | . 05         | . 09         | .00        | . 00 | .00        | .00  | .00  | . 14       |      |        | . 14             |             |         |           |      |
| N           | .00          | .00        | .00              | . 23                   | . 05       | .00        | . 09   | . 09  | .09          | . 27         | .27          | . 14       | .00  | . 05       | .00  | .00  | 1.27       |      |        |                  | 1.27        |         |           |      |
| 2 SS        | . 14         | .00        | .00              | . 05                   | . 05       | .00        | . 18   | . 14  | . 23         | 1.36         | .68          | .27        | . 18 | . 23       | .00  | . 14 | 3.63       |      |        |                  |             | 3.63    |           |      |
| 4 MS        | . 05         | .00        | .00              | . 00                   | . 05       | .50        | .00    | . 18  | . 59         | 1.59         | . 68         | . 45       | . 05 | .09        | .00  | . 09 | 4.32       |      |        |                  |             |         | 4.32      |      |
| ES          | .00          | .00        | .00              | .00                    | .00        | . 14       | . 14   | .50   | .77          | .27          | .32          | .59        | .00  | .00        | .00  | .00  | 2.73       |      |        |                  |             |         |           | 2.73 |
| TOT         | 5.82         | 7.31       | 7.22             | 7.50                   | 5.68       | 5.54       | 4.73   | 4.82  | 8.95         | 10.90        | 7.50         | 6.36       | 4.27 | 4.59       | 4.45 | 4.36 | 100.00     | . 05 | .36    | 2.68             | 47.48       | 26.85   | 16.45     | 6.13 |
| Wind        | l Direc      | ction t    | oy St <b>a</b> l | oility                 |            |            |        |       |              |              |              |            |      |            |      |      |            |      |        |                  |             |         |           |      |
|             | N            | NNE        | NE               | ENE                    | £          | ESÉ        | SE     | SSE   | S            | SSW          | SW           | WSW        | W    | WNW        | NW   | NNW  | TOTAL      | ·STA | ABILIT | TY CLAS          | SSES -      |         |           |      |
|             | .00          | . 00       | .00              | .00                    | .00        | .00        | .00    | .00   | . 05         | .00          | .00          | .00        | .00  | .00        | . 00 | .00  | . 05       | Exti | remely | / Unsta          | ble         |         |           |      |
|             | .00          | .00        | . 05             | . 05                   | .00        | .00        | .00    | .00   | .09          | .09          | .09          | .00        | .00  | .00        | .00  | .00  | .36        | Mode | eratel | ly Unst          | able        |         |           |      |
|             | . 18         | .09        | . 09             | . 18                   | .05        | .41        | .00    | .00   | . 50         | .27          | .55          | .05        | . 05 | .09        | . 18 | . 00 | 2.68       | Sli  | ghtly  | Unstab           | )le         |         |           |      |
|             | 3.95         | 4.36       | 5.54             | 4.82                   | 2.00       | 2.23       | 2.14   | 1.73  | 2.68         | 3.45         | 2.50         | 2.45       | 2.09 | 1.91       | 2.77 | 2.86 | 47.48      | Neu  | tral   |                  |             |         |           |      |
|             | 1.00         | 2.54       | 1.27             | 2.32                   | 2.82       | 1.36       | 1.45   | 1.09  | 1.91         | 3.50         | 1.86         | 1.50       | 1.18 | 1.32       | . 73 | 1.00 | 26.85      | Sli  | ghtly  | Stable           | <u> </u>    |         |           |      |
|             | . 68         | . 32       | . 27             | . 14                   | .82        | 1.32       | . 64   | . 77  | 2.09         | 2.77         | 1.77         | 1.50       | .91  | 1.18       | .77  | . 50 | 16.45      |      |        | ly St <b>a</b> t |             |         |           |      |
|             | .00          | .00        | .00              | .00                    | . 00       | . 23       | . 50   | 1.23  | 1.64         | .82          | . 73         | .86        | . 05 | . 09       | .00  | .00  | 6.13       | Ext  | remely | y Stabl          | le          |         |           |      |
| Wind        | d Direc      | ction (    | by Wind          | d Speed                | i          |            |        |       |              |              |              |            |      |            |      |      |            |      |        |                  |             |         |           |      |
|             | N            | NNE        | NE               | ENE                    | Ε          | ESE        | SE     | SSE   | s            | SSW          | SW           | WSW        | W    | MNM        | NW   | NNW  | TOTAL      | -WI  | ND SPE | EED CLA          | ASSES-      |         |           |      |
|             | 00           | nn         | 00               | nn                     | ΔΩ         | . 00       | .00    | .00   | .00          | .00          | .00          | . 00       | .00  | .00        | . 00 | .00  | .00        |      | CAL    | н                |             |         |           |      |
|             | .00          | .00        |                  | .00<br>.0 <del>9</del> | .00<br>.05 |            |        |       |              |              |              | .00        | .00  | .00        | .05  | .05  |            |      |        | <br>3.5 r        | <b>n</b> ph |         |           |      |
|             | .00          |            | 1.04             |                        | 1.00       |            |        | .41   |              |              |              |            | .45  | .41        | .23  | .27  |            |      |        | 7.5              |             |         |           |      |
|             | . 55         | 1.04       | 1.04             | . 55                   | 1.00       | .00        | 1 27   | 1 41  |              |              |              |            | 1 50 |            |      |      | 29.09      |      |        | 12 5 6           | •           |         |           |      |

2.41 3.09 1.59 2.50 2.18 1.64 1.27 1.41 1.68 1.00 1.54 1.14 1.59 1.82 1.68 1.54 28.08 7.6 - 12.5 mph

1.68 2.64 3.36 2.82 1.68 1.50 1.27 1.09 2.45 2.91 2.00 2.00 1.45 1.27 1.68 1.32 31.12

 1.00
 .55
 1.23
 1.27
 .64
 1.04
 1.18
 .86
 2.86
 3.27
 1.73
 1.23
 .45
 .73
 .82
 .95
 19.81

 .18
 .00
 .00
 .27
 .14
 .64
 .41
 .91
 1.68
 3.54
 2.04
 1.45
 .23
 .36
 .00
 .23
 12.09

October December 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

#### NUMBER OF OBSERVATIONS - 2208 VALUES ARE PERCENT OCCURRENCE

| PEED           |      |      |      |      |      | • • • • • • | - MIND | DIRECT | 1011 0 | L/13L3 |      |      |      |              |            |      |             |     |     |      | LITY C |      |      |    |
|----------------|------|------|------|------|------|-------------|--------|--------|--------|--------|------|------|------|--------------|------------|------|-------------|-----|-----|------|--------|------|------|----|
| .ASS           | N    | NNE  | NE   | ENE  | Ε    | ESE         | SE     | SSE    | S      | SSW    | SW   | WSW  | W    | MNM          | NW         | NNW  | TOTAL       | EU  | MU  | SU   | N      | SS   | MS   | E: |
| ΕU             | . 00 | .00  | .00  | .00  | .00  | . 00        | .00    | .00    | .00    | . 00   | . 00 | .00  | . 00 | .00          | .00        | .00  | . 00        | .00 |     |      |        |      |      |    |
| MU             | .00  | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | . 00 | .00  | .00          | .00        | .00  | .00         |     | .00 |      |        |      |      |    |
| SU             | .00  | .00  | .00  | .00  | .00  | .00         | .00    | . 00   | .00    | .00    | .00  | . 00 | .00  | . 00         | .00        | .00  | .00         |     |     | .00  |        |      |      |    |
| N              | .00  | .00  | .00  | .00  | . 00 | .00         | . 00   | . 00   | .00    | .00    | . 00 | .00  | . 00 | . 00         | .00        | .00  | .00         |     |     |      | .00    |      |      |    |
| SS             | .00  | .00  | .00  | .00  | . 00 | .00         | .00    | .00    | . 00   | .00    | .00  | . 00 | .00  | .00          | .00        | .00  | .00         |     |     |      |        | .00  |      |    |
| MS             | .00  | .00  | .00  | .00  | . 00 | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         |     |     |      |        |      | . 00 |    |
| ES             | .00  | .00  | .00  | .00  | .00  | . 00        | .00    | .00    | .00    | .00    | .00  | .00  | . 00 | .00          | .00        | .00  | .00         |     |     |      |        |      |      |    |
| EU             | .00  | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | . 00        | .00 |     |      |        |      |      |    |
| <b>4</b> U     | . 00 | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         |     | .00 |      |        |      |      |    |
| SU             | . 00 | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | . 00       | . 00 | .00         |     |     | . 00 |        |      |      |    |
| N              | .00  | . 00 | . 05 | . 05 | . 05 | .00         | .00    | .00    | .00    | .00    | .00  | .00  | . 14 | . 14         | . 00       | . 14 | . 54        |     |     |      | .54    |      |      |    |
| SS             | . 05 | .09  | .00  | .05  | .00  | .00         | .00    | . 05   | .00    | .00    | .00  | . 00 | .00  | . 00         | .00        | .00  | . 23        |     |     |      |        | .23  |      |    |
| MS             | .00  | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | . 00   | .00  | .00  | .00  | .00          | .00        | .00  | .00         |     |     |      |        |      | .00  |    |
| ES             | .00  | . 05 | .00  | .00  | . 05 | .00         | .00    | .00    | .00    | .00    | .00  | .05  | .00  | . 00         | .00        | .00  | . 14        |     |     |      |        |      |      |    |
| ΞU             | .00  | .00  | . 00 | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         | .00 |     |      |        |      |      |    |
| <del>4</del> U | .00  | .00  | .00  | .00  | .00  | .00         | . 00   | .00    | .00    | .00    | . 00 | .00  | .00  | .00          | .00        | .00  | .00         |     | .00 |      |        |      |      |    |
| SU             | .00  | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         |     |     | . 00 |        |      |      |    |
| N              | .23  | .00  | . 23 | . 23 | . 18 | . 09        | . 05   | . 18   | . 27   | . 23   | . 09 | . 05 | .27  | . 36         | .23        | .41  | 3.08        |     |     |      | 3.08   |      |      |    |
| SS             | .23  | . 50 | . 14 | . 05 | . 09 | . 18        | .05    | . 05   | .09    | . 23   | . 09 | .09  | . 14 | . 18         | . 18       | . 14 | 2.40        |     |     |      |        | 2.40 |      |    |
| MS             | . 05 | .00  | . 05 | . 09 | .00  | .00         | .00    | .00    | .00    | . 18   | . 23 | .23  | . 14 | . 23         | .09        | .09  | 1.36        |     |     |      |        |      | 1.36 |    |
| ES             | .00  | . 14 | . 05 | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .09  | .05  | .00  | .00          | .00        | .00  | .32         |     |     |      |        |      |      |    |
| EU             | . 00 | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | . 00       | .00  | .00         | .00 |     |      |        |      |      |    |
| MU             | .00  | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | . 00         | .00        | .00  | .00         |     | .00 |      |        |      |      |    |
| SU             | .00  | . 00 | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | . 00 | .00  | . 00 | . 00         | .00        | .00  | .00         |     |     | .00  |        |      |      |    |
| N              | . 68 | .27  | .54  | .45  | .32  | .32         | . 91   | .45    | .41    | .09    | .45  | .41  | .45  | .68          | .91        | .68  | 8.02        |     |     |      | 8.02   | r ra |      |    |
| SS             | .23  | . 23 | .54  | .50  | . 63 | . 27        | .50    | . 18   | . 05   | .23    | .32  | .41  | .41  | .32          | .63        | .09  | 5.53        |     |     |      |        | 5.53 | 1.77 |    |
| MS             | .05  | .00  | .00  | . 14 | .00  | .09         | .09    | .23    | .09    | .32    | . 14 | . 18 | .27  | . 00<br>. 05 | .09<br>.00 | .09  | 1.77<br>.95 |     |     |      |        |      | 1.77 |    |
| ES             | .00  | .00  | .09  | .00  | .00  | .00         | . 05   | .09    | . 18   | . 14   | .03  | .03  | .23  | .03          | .00        | .00  | . , , ,     |     |     |      |        |      |      |    |
| EU             | . 00 | .00  | . 00 | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         | .00 |     |      |        |      |      |    |
| MU             | .00  | .00  | . 00 | . 00 | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         |     | .00 |      |        |      |      |    |
| SU             | . 00 | .00  | .00  | .00  | .00  | .00         | .00    | .00    | .00    | .00    | .00  | .00  | .00  | .00          | .00        | .00  | .00         |     |     | .00  | 14.50  |      |      |    |
| N              | . 63 | .72  |      | . 95 | .32  | .32         | . 18   | .59    | .23    | .27    | 1.09 | 2.17 | 1.31 | 2.49         | 1.72       | .41  | 14.58       |     |     |      | 14.58  | c 20 |      |    |
| SS             | .09  | .41  | .32  | .27  | . 18 | . 18        | .32    | .50    | . 14   | .23    | .36  | .95  | .95  | .68          | .41        | .23  | 6.20        |     |     |      |        | 6.20 | 2 67 |    |
| MS             | .23  | .00  | . 05 | . 05 | .00  | .09         | .27    | .32    | .27    | .27    | .36  | .23  | .45  | .36          | .41        | .32  | 3.67        |     |     |      |        |      | 3.67 | ,  |
| ES             | .00  | .05  | . 09 | . 00 | .00  | .00         | . 05   | . 05   | . 45   | . 41   | .09  | .00  | . 09 | .32          | . 09       | . 05 | 1.72        |     |     |      |        |      |      | 1  |

### ComEd LASALLE STATION 375 ft. WIND SPEED and WIND DIRECTION

October-December 2000 375-33 ft. DIFFERENTIAL TEMPERATURE

| PEED | N                                               | NNE                                                                            | NE                                              | ENE                                                                  | Ε                                               | ESE                                             | SE                                                                  | SSE                                                                          | TION CI<br>S                                      | SSW                                                                   | SW                                                                    | WSW                                                                         | w                                              | WNW                                                                   | N₩                                                    | NNW                                                   | TOTAL                                                                                        | EU                                                    | MU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SU                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS    | MS    |  |
|------|-------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|
| ASS  | N                                               | MME                                                                            | NE                                              | ENE                                                                  | Ē                                               | EJE                                             | JL                                                                  | <b>33</b> L                                                                  | ,                                                 | JJM                                                                   | J#                                                                    | non-                                                                        | ,                                              | ,,,,,,                                                                |                                                       | *****                                                 | 701712                                                                                       |                                                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| Ευ   | .00                                             | .00                                                                            | .00                                             | . 00                                                                 | .00                                             | .00                                             | . 00                                                                | .00                                                                          | .00                                               | .00                                                                   | . 00                                                                  | .00                                                                         | .00                                            | . 00                                                                  | .00                                                   | .00                                                   | .00                                                                                          | .00                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| MU   | .00                                             | .00                                                                            | .00                                             | .00                                                                  | .00                                             | .00                                             | .00                                                                 | .00                                                                          | .00                                               | .00                                                                   | .00                                                                   | . 00                                                                        | .00                                            | .00                                                                   | .00                                                   | .00                                                   | .00                                                                                          |                                                       | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| SU   | .00                                             | .00                                                                            | .00                                             | .00                                                                  | .00                                             | .00                                             | .00                                                                 | .00                                                                          | .00                                               | .00                                                                   | .00                                                                   | . 00                                                                        | .00                                            | .00                                                                   | .00                                                   | .00                                                   | .00                                                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .00                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| N    | .36                                             | .41                                                                            | 1.27                                            | .82                                                                  | . 14                                            | . 23                                            | .32                                                                 | .36                                                                          | . 50                                              | . 50                                                                  | .82                                                                   | 1.09                                                                        | 1.49                                           | 1.90                                                                  | 1.81                                                  | 1.54                                                  | 13.54                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 13.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |  |
| SS   | . 27                                            | . 14                                                                           | . 23                                            | .32                                                                  | .27                                             | .27                                             | .32                                                                 | .50                                                                          | .09                                               | .41                                                                   | . 54                                                                  | .41                                                                         | 1.27                                           | . 82                                                                  | . 95                                                  | . 14                                                  | 6.93                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.93  |       |  |
| MS   | . 05                                            | . 00                                                                           | . 09                                            | .00                                                                  | .09                                             | .27                                             | . 23                                                                | .63                                                                          | .54                                               | .32                                                                   | .36                                                                   | . 05                                                                        | .63                                            | .36                                                                   | .32                                                   | . 32                                                  | 4.26                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 4.26  |  |
| ES   | . 14                                            | . 00                                                                           | .09                                             | .00                                                                  | .00                                             | .00                                             | . 05                                                                | .00                                                                          | .36                                               | . 14                                                                  | . 18                                                                  | .00                                                                         | .23                                            | .09                                                                   | . 18                                                  | . 09                                                  | 1.54                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| EU   | .00                                             | . 00                                                                           | .00                                             | .00                                                                  | .00                                             | . 00                                            | .00                                                                 | .00                                                                          | .00                                               | .00                                                                   | .00                                                                   | .00                                                                         | .00                                            | .00                                                                   | . 00                                                  | .00                                                   | . 00                                                                                         | .00                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| MU   | .00                                             | .00                                                                            | .00                                             | .00                                                                  | .00                                             | .00                                             | .00                                                                 | .00                                                                          | .00                                               | .00                                                                   | .00                                                                   | .00                                                                         | .00                                            | .00                                                                   | .00                                                   | .00                                                   | .00                                                                                          |                                                       | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| SU   | .00                                             | .00                                                                            | .00                                             | .00                                                                  | .00                                             | .00                                             | .00                                                                 | .00                                                                          | .00                                               | . 14                                                                  | .00                                                                   | .00                                                                         | .00                                            | .00                                                                   | .00                                                   | .00                                                   | . 14                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 14                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| N    | . 18                                            | .09                                                                            | .23                                             | .09                                                                  | .00                                             | .50                                             | . 18                                                                | .09                                                                          | .23                                               | .50                                                                   | .32                                                                   | .59                                                                         | . 95                                           | 1.45                                                                  | 1.18                                                  | . 95                                                  | 7.52                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |  |
| SS   | .00                                             | .09                                                                            | . 14                                            | .05                                                                  | .23                                             | .50                                             | .72                                                                 | .23                                                                          | .82                                               | 1.59                                                                  | .59                                                                   | .09                                                                         | 2.58                                           | 2.04                                                                  | .32                                                   | .00                                                   | 9.96                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.96  |       |  |
| MS   | .00                                             | .00                                                                            | .00                                             | .00                                                                  | .00                                             | .32                                             | .36                                                                 | .54                                                                          | .36                                               | .77                                                                   | .41                                                                   | .00                                                                         | .00                                            | . 14                                                                  | .00                                                   | .00                                                   | 2.90                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 2.90  |  |
| ES   | .00                                             | .00                                                                            | .00                                             | . 00                                                                 | .00                                             | .00                                             | .00                                                                 | .00                                                                          | . 05                                              | .23                                                                   | 1.13                                                                  | .54                                                                         | . 18                                           | .45                                                                   | . 14                                                  | .00                                                   | 2.72                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
|      |                                                 |                                                                                |                                                 |                                                                      |                                                 |                                                 |                                                                     |                                                                              |                                                   |                                                                       |                                                                       |                                                                             |                                                |                                                                       |                                                       |                                                       |                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| от   | 3.44                                            | 3.17                                                                           | 5.34                                            | 4.08                                                                 | 2.54                                            | 3.62                                            | 4.62                                                                | 5.03                                                                         | 5.12                                              | 7.16                                                                  | 7.70                                                                  | 7.65                                                                        | 12.18                                          | 13.04                                                                 | 9.65                                                  | 5.66                                                  | 100.00                                                                                       | .00                                                   | . 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 14                                                   | 47.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.25 | 13.95 |  |
|      |                                                 |                                                                                |                                                 |                                                                      |                                                 |                                                 |                                                                     |                                                                              |                                                   |                                                                       |                                                                       |                                                                             |                                                |                                                                       |                                                       |                                                       |                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| ind  | Direc                                           | tion b                                                                         | y Stab                                          | ility                                                                |                                                 |                                                 |                                                                     |                                                                              |                                                   |                                                                       |                                                                       |                                                                             |                                                |                                                                       |                                                       |                                                       |                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| lind | Direc<br>N                                      | tion b                                                                         | y Stab<br>NE                                    | ility<br>ENE                                                         | E                                               | ESE                                             | SE                                                                  | SSE                                                                          | s                                                 | SSW                                                                   | SW                                                                    | WSW                                                                         | W                                              | WNW                                                                   | N₩                                                    | NNW                                                   | TOTAL                                                                                        | · ST/                                                 | ABILIT'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y CLAS                                                 | SES-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |  |
| lind |                                                 |                                                                                |                                                 |                                                                      | E<br>.00                                        | ESE<br>.00                                      | SE<br>.00                                                           | SSE                                                                          | S<br>.00                                          | SSW<br>.00                                                            | S₩<br>.00                                                             | wsw<br>.00                                                                  | . 00                                           | <b>WNW</b><br>. 00                                                    | <b>N₩</b><br>.00                                      | <b>NNW</b><br>.00                                     | TOTAL                                                                                        |                                                       | ABILIT<br>remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| lind | N                                               | NNE                                                                            | NE                                              | ENE                                                                  |                                                 |                                                 |                                                                     |                                                                              |                                                   |                                                                       |                                                                       |                                                                             | .00<br>.00                                     |                                                                       |                                                       |                                                       |                                                                                              | Exti                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unsta                                                  | ble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |  |
| lind | N<br>.00                                        | . 00                                                                           | NE<br>.00                                       | .00                                                                  | .00                                             | . 00                                            | .00                                                                 | . 00                                                                         | . 00                                              | .00                                                                   | . 00                                                                  | . 00                                                                        |                                                | . 00                                                                  | .00                                                   | .00                                                   | .00                                                                                          | Exti<br>Mode                                          | remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unsta<br>y Unst                                        | ble<br>able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |  |
| lind | N<br>.00<br>.00                                 | .00<br>.00                                                                     | .00<br>.00                                      | .00<br>.00                                                           | .00                                             | .00                                             | .00                                                                 | .00                                                                          | .00                                               | .00                                                                   | .00                                                                   | .00                                                                         | .00                                            | .00                                                                   | .00                                                   | .00                                                   | .00<br>.00<br>.14                                                                            | Exti<br>Mode                                          | remely<br>eratel<br>ghtly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unsta<br>y Unst                                        | ble<br>able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |  |
| Nind | N .00 .00 .00                                   | .00<br>.00<br>.00                                                              | .00<br>.00                                      | .00<br>.00                                                           | .00                                             | .00<br>.00                                      | .00                                                                 | .00<br>.00<br>.00                                                            | .00                                               | .00<br>.00<br>.14<br>1.59                                             | .00<br>.00                                                            | .00.                                                                        | .00<br>.00<br>4.62                             | .00<br>.00<br>.00<br>7.02                                             | .00<br>.00<br>.00<br>5.84                             | .00<br>.00<br>.00<br>4.12                             | .00<br>.00<br>.14                                                                            | Extr<br>Mode<br>Slij<br>Neut                          | remely<br>eratel<br>ghtly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unsta<br>y Unst<br>Unstab                              | ble<br>able<br>de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |  |
| Hind | .00<br>.00<br>.00                               | .00<br>.00<br>.00                                                              | .00<br>.00<br>.00                               | .00<br>.00<br>.00                                                    | .00<br>.00<br>.00                               | .00<br>.00<br>.00                               | .00<br>.00<br>.00                                                   | .00<br>.00<br>.00<br>1.68<br>1.49                                            | .00<br>.00<br>.00<br>1.63                         | .00<br>.00<br>.14<br>1.59<br>2.67                                     | .00<br>.00<br>.00<br>2.76<br>1.90                                     | .00<br>.00<br>.00<br>4.30                                                   | .00<br>.00<br>4.62<br>5.34                     | .00<br>.00<br>.00<br>7.02<br>4.03                                     | .00<br>.00<br>.00<br>5.84                             | .00<br>.00<br>.00<br>4.12                             | .00<br>.00<br>.14<br>47.28<br>31.25                                                          | Extr<br>Mode<br>Slig<br>Neur<br>Slig                  | remely<br>eratel<br>ghtly  <br>tral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unsta<br>y Unst<br>Unstab<br>Stable                    | ble<br>able<br>ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |  |
| lind | N .00 .00 .00 .00 2.08 .86                      | .00<br>.00<br>.00<br>1.49                                                      | NE .00 .00 .00 3.49 1.36                        | .00<br>.00<br>.00<br>2.58<br>1.22                                    | .00<br>.00<br>.00<br>1.00                       | .00<br>.00<br>.00<br>1.45<br>1.40               | .00<br>.00<br>.00<br>1.63<br>1.90                                   | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72                                    | .00<br>.00<br>.00<br>1.63<br>1.18                 | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86                             | .00<br>.00<br>.00<br>2.76<br>1.90                                     | .00<br>.00<br>.00<br>4.30<br>1.95                                           | .00<br>.00<br>4.62<br>5.34<br>1.49             | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09                             | .00<br>.00<br>.00<br>5.84<br>2.49                     | .00<br>.00<br>.00<br>4.12                             | .00<br>.00<br>.14<br>47.28<br>31.25                                                          | Extr<br>Mode<br>Slig<br>Neur<br>Slig<br>Mode          | remely<br>eratel<br>ghtly<br>tral<br>ghtly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unsta<br>y Unst<br>Unstab<br>Stable<br>y Stab          | ble<br>able<br>le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |  |
|      | N .00 .00 .00 .00 .86 .36 .14                   | .00<br>.00<br>.00<br>1.49<br>1.45<br>.00<br>.23                                | NE .00 .00 .00 3.49 1.36 .18 .32                | .00<br>.00<br>.00<br>2.58<br>1.22<br>.27                             | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09        | .00<br>.00<br>.00<br>1.45<br>1.40               | .00<br>.00<br>.00<br>1.63<br>1.90                                   | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72                                    | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27         | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86                             | .00<br>.00<br>.00<br>2.76<br>1.90                                     | .00<br>.00<br>.00<br>4.30<br>1.95                                           | .00<br>.00<br>4.62<br>5.34<br>1.49             | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09                             | .00<br>.00<br>.00<br>5.84<br>2.49                     | .00<br>.00<br>.00<br>4.12<br>.59                      | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95                                                 | Extr<br>Mode<br>Slig<br>Neur<br>Slig<br>Mode          | remely<br>eratel<br>ghtly<br>tral<br>ghtly<br>eratel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unsta<br>y Unst<br>Unstab<br>Stable<br>y Stab          | ble<br>able<br>le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |  |
|      | N .00 .00 .00 .00 .86 .36 .14                   | .00<br>.00<br>.00<br>1.49<br>1.45<br>.00<br>.23                                | NE .00 .00 .00 3.49 1.36 .18 .32                | .00<br>.00<br>.00<br>2.58<br>1.22<br>.27<br>.00                      | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09        | .00<br>.00<br>.00<br>1.45<br>1.40               | .00<br>.00<br>.00<br>1.63<br>1.90                                   | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72                                    | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27         | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86                             | .00<br>.00<br>.00<br>2.76<br>1.90                                     | .00<br>.00<br>.00<br>4.30<br>1.95                                           | .00<br>.00<br>4.62<br>5.34<br>1.49             | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09                             | .00<br>.00<br>.00<br>5.84<br>2.49                     | .00<br>.00<br>.00<br>4.12<br>.59<br>.82               | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95                                                 | Extr<br>Mode<br>Slig<br>Neur<br>Slig<br>Mode<br>Extr  | remely<br>eratel<br>ghtly<br>tral<br>ghtly<br>eratel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unsta<br>y Unst<br>Unstab<br>Stable<br>y Stab<br>Stabl | ble<br>able<br>le<br>le<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |  |
|      | N .00 .00 .00 .00 2.08 .86 .36 .14              | .00<br>.00<br>.00<br>1.49<br>1.45<br>.00<br>.23                                | .00<br>.00<br>.00<br>3.49<br>1.36<br>.18<br>.32 | .00<br>.00<br>.00<br>2.58<br>1.22<br>.27<br>.00                      | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09        | .00<br>.00<br>.00<br>1.45<br>1.40<br>.77        | .00<br>.00<br>.00<br>1.63<br>1.90<br>.95                            | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72<br>.14                             | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27<br>1.04 | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86<br>.91                      | .00<br>.00<br>.00<br>2.76<br>1.90<br>1.49<br>1.54                     | .00<br>.00<br>.00<br>4.30<br>1.95<br>.68                                    | .00<br>.00<br>4.62<br>5.34<br>1.49<br>.72      | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09<br>.91                      | .00<br>.00<br>.00<br>5.84<br>2.49<br>.91<br>.41       | .00<br>.00<br>.00<br>4.12<br>.59<br>.82               | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95<br>7.38                                         | Extr<br>Mode<br>Slig<br>Neur<br>Slig<br>Mode<br>Extr  | remely<br>eratel<br>ghtly<br>tral<br>ghtly<br>eratel<br>remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unsta<br>y Unst<br>Unstab<br>Stable<br>y Stab<br>Stabl | ble<br>able<br>le<br>le<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |  |
|      | N .00 .00 .00 .2.08 .86 .36 .14                 | NNE .00 .00 .00 1.49 1.45 .00 .23                                              | NE .00 .00 .00 .00 .3.49 1.36 .18 .32           | ENE .00 .00 .00 .00 .2.58 .2.7 .00 .00 .00 .00 .00 .00 .00 .00 .00 . | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09<br>.05 | .00<br>.00<br>.00<br>1.45<br>1.40<br>.77<br>.00 | .00<br>.00<br>.00<br>1.63<br>1.90<br>.95<br>.14                     | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72<br>.14                             | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27<br>1.04 | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86<br>.91                      | .00<br>.00<br>.00<br>2.76<br>1.90<br>1.49<br>1.54                     | .00<br>.00<br>.00<br>4.30<br>1.95<br>.68<br>.72                             | .00<br>.00<br>4.62<br>5.34<br>1.49<br>.72      | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09<br>.91                      | .00<br>.00<br>.00<br>5.84<br>2.49<br>.91<br>.41       | .00<br>.00<br>.00<br>4.12<br>.59<br>.82<br>.14        | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95<br>7.38                                         | Extr<br>Mode<br>Slig<br>Neur<br>Slig<br>Mode<br>Extr  | remely<br>eratel,<br>ghtly  <br>tral<br>ghtly :<br>eratel,<br>remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unsta<br>y Unsta<br>Unstable<br>Stable<br>Stabl        | able able ile e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
|      | N .00 .00 .00 .00 .00 .00 .00 .00 .00 .0        | NNE .00 .00 .00 .00 .00 .00 .00 .00 .23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | NE .00 .00 .00 .00 .00 .1.36 .18 .32            | ENE .00 .00 .00 2.58 1.22 .27 .00  1 Speec                           | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09<br>.05 | .00<br>.00<br>.00<br>1.45<br>1.40<br>.77<br>.00 | .00<br>.00<br>.00<br>1.63<br>1.90<br>.95<br>.14                     | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72<br>.14                             | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27<br>1.04 | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86<br>.91                      | .00<br>.00<br>.00<br>2.76<br>1.90<br>1.49<br>1.54                     | .00<br>.00<br>.00<br>4.30<br>1.95<br>.68<br>.72                             | .00<br>.00<br>4.62<br>5.34<br>1.49<br>.72      | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09<br>.91                      | .00<br>.00<br>.00<br>5.84<br>2.49<br>.91<br>.41       | .00<br>.00<br>.00<br>4.12<br>.59<br>.82<br>.14        | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95<br>7.38                                         | Extra Mode Slight Neuron Slight Mode Extra Mode - WII | remely ghtly ghtly firal ghtly ghtly eratel, remely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unstab<br>Unstab<br>Unstable<br>Stable<br>Stabl        | able able ile e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
|      | N .00 .00 .00 2.08 .86 .36 .14 Direct N .00 .05 | NNE .00 .00 .00 1.49 1.45 .00 .23 tion t NNE .00 .14 .63                       | NE .00 .00 .00 .00 .1.36 .18 .32                | ENE .00 .00 .00 2.58 1.22 .27 .00  1 Speece ENE .00 .09 .36          | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09<br>.05 | .00<br>.00<br>.00<br>1.45<br>1.40<br>.77<br>.00 | .00<br>.00<br>.00<br>1.63<br>1.90<br>.95<br>.14<br>SE<br>.00<br>.00 | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72<br>.14<br>SSE<br>.00<br>.05<br>.23 | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27<br>1.04 | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86<br>.91<br>SSW<br>.00<br>.00 | .00<br>.00<br>.00<br>2.76<br>1.90<br>1.49<br>1.54<br>SW<br>.00<br>.00 | .00<br>.00<br>.00<br>4.30<br>1.95<br>.68<br>.72<br>WSW<br>.00<br>.05<br>.41 | .00<br>.00<br>4.62<br>5.34<br>1.49<br>.72<br>W | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09<br>.91<br>WMW<br>.00<br>.14 | .00<br>.00<br>.00<br>5.84<br>2.49<br>.91<br>.41<br>NW | .00<br>.00<br>.00<br>4.12<br>.59<br>.82<br>.14<br>NNW | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95<br>7.38<br>TOTAL<br>.00<br>.91<br>7.16<br>16.26 | Extr<br>Mode<br>Slig<br>Neur<br>Slig<br>Mode<br>Extr  | remely year and see a large with the see a large wi | Unstable Stable Stable Stabl Stabl                     | ble able ile e state sta |       |       |  |
|      | N .00 .00 .00 .2.08 .86 .36 .14 .14             | NNE .00 .00 .00 .00 .00 .00 .00 .00 .00 .0                                     | NE .00 .00 .00 .00 .1.36 .18 .32                | ENE .00 .00 .00 2.58 1.22 .27 .00  I Speec ENE .00 .09 .36 1.09      | .00<br>.00<br>.00<br>1.00<br>1.40<br>.09<br>.05 | .00<br>.00<br>.00<br>1.45<br>1.40<br>.77<br>.00 | .00<br>.00<br>.00<br>1.63<br>1.90<br>.95<br>.14<br>SE<br>.00<br>.00 | .00<br>.00<br>.00<br>1.68<br>1.49<br>1.72<br>.14<br>SSE<br>.00<br>.05<br>.23 | .00<br>.00<br>.00<br>1.63<br>1.18<br>1.27<br>1.04 | .00<br>.00<br>.14<br>1.59<br>2.67<br>1.86<br>.91<br>SSW<br>.00<br>.00 | .00<br>.00<br>.00<br>2.76<br>1.90<br>1.49<br>1.54<br>SW<br>.00<br>.00 | .00<br>.00<br>.00<br>4.30<br>1.95<br>.68<br>.72<br>WSW<br>.00<br>.05<br>.41 | .00<br>.00<br>4.62<br>5.34<br>1.49<br>.72<br>W | .00<br>.00<br>.00<br>7.02<br>4.03<br>1.09<br>.91<br>WMW<br>.00<br>.14 | .00<br>.00<br>.00<br>5.84<br>2.49<br>.91<br>.41<br>NW | .00<br>.00<br>.00<br>4.12<br>.59<br>.82<br>.14<br>NNW | .00<br>.00<br>.14<br>47.28<br>31.25<br>13.95<br>7.38<br>TOTAL<br>.00<br>.91<br>7.16          | Extr<br>Mode<br>Slii<br>Neur<br>Slii<br>Mode<br>Extr  | remely year to the control of the co | Unstable Stable Stable Stabl  ED CLA  M  3.5 m  7.5 m  | ble able le le state SSSES- aph aph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |  |

.82 .54 1.68 1.13 .50 .77 .91 1.49 1.49 1.36 1.90 1.54 3.62 3.17 3.26 2.08 26.27 18.6 - 24.5 mph
.18 .18 .36 .14 .23 1.31 1.27 .86 1.45 3.22 2.45 1.22 3.71 4.08 1.63 .95 23.23 > 24.5 mph

### EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2000)

## APPENDIX A OFFSITE DOSE CALCULATION MANUAL

## LTS 1300-1 CHLORINE SURVEY IN THE VICINITY OF LASALLE COUNTY GENERATING STATION

#### 1. Executive Summary

A survey of potential sources of liquid chlorine stored or transported within a five-mile radius of LaSalle Station was performed that updates surveys of 1975, 1986, 1988, 1991, 1994 and 1997. This survey ensures compliance with 10CFR50, Appendix A, "General Design Criteria for Nuclear Power Plants," Criterion 19, "Control Room" and Regulatory Guide 1.78, "Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release."

A database of potential chlorine sources was built based on facilities identified in previous surveys and updated with information from the Grundy and LaSalle County Emergency Services and Disaster Agencies (ESDA's). The database was limited to facilities located between the Marseilles and Dresden Island Locks and included facilities within and without the five-mile radius of LaSalle Station. A total of fourteen facilities in Grundy and LaSalle Counties fit the criteria and were included in this survey.

Data from seven controlling authorities and fourteen facilities was reviewed and follow-up contacts were made to confirm the information gathered. The 2000 survey identified four facilities with chlorine used and stored onsite. All four facilities reported their chlorine was stored in 150 lb. cylinders, which is the maximum size container permitted under Regulatory Guide 1.95, "Protection of Nuclear Power Plant Control Room Operators Against an Accidental Chlorine Release, for which no automatic protective features are in control room ventilation. One of the four chlorine sites identified is located within the five-mile radius of LaSalle Station.

The results of this survey indicate chlorine is used and stored in small quantities at facilities in the vicinity of LaSalle Station, but not transported on the Illinois River.

#### 2. Introduction

Licensing of LaSalle County Generating Station required a survey of industries and transportation routes in the site vicinity that may use, store, and/or transport hazardous chemicals. The original survey, conducted in 1975, revealed anhydrous ammonia and probably chlorine were transported by barge on the Illinois River. The information gathered was not complete enough to conclude that chlorine was not shipped in large quantities by barge on the Illinois River.

A new survey was conducted in January-February 1986 to supplement the information obtained from the 1975 chlorine survey. The information collected by the 1986 survey concluded no special chlorine protection provisions were required at LaSalle Station. In the safety evaluation supporting Amendment No. 38 to Facility Operating License No. NPF-11 and Amendment No. 20 to Facility Operating License No. NPF-18, the U.S.

Nuclear Regulatory Commission (NRC) agreed with this conclusion, but recommended a three-year update for the Illinois River chlorine survey. ComEd committed to the survey update in a letter to the NRC dated March 5, 1986. Surveys were conducted in 1988, 1991, 1994 and 1997 supporting the conclusion that chlorine is not shipped on the Illinois River in sufficient quantities to present a hazard to the LaSalle Station Control Room. In accordance with this commitment, a new survey was conducted in September-October 2000.

The following sections describe regulatory guides that form the basis of the control room habitability evaluation, results of previous surveys, the methods and results of the 2000 survey, and the conclusion regarding chlorine as a hazard. The results of the 2000 survey and previous surveys in 1988, 1991, 1994 and 1997 fully support the 1986 conclusion that no special chlorine protection measures are required at LaSalle Station.

#### 3. Regulatory Guides

Regulatory Guide 1.78, "Assumption for Evaluating the Habitability of a Nuclear Power Plant Control Room during a Postulated Hazardous Chemical Release" identifies chlorine as a hazardous chemical that requires a control room habitability analysis in the event of an accidental chlorine release from stationary or mobile sources near the station. Regulatory Guide 1.95, "Protection of Nuclear Power Plant Control Room Operators Against an Accidental Chlorine Release" specifically addresses onsite accidental chlorine release. However, it can also be used in analyzing effects of an offsite chlorine release.

Regulatory Position 1 of Regulatory Guide 1.78, states chlorine stored or situated at greater distances than five miles from the control room need not be considered in evaluating habitability of the nuclear power plant control room during a postulated chlorine release. Regulatory Guide 1.78 also specifies frequency, distance, and quantity of chemicals transported or stored with respect to the control room that require a control room habitability analysis. The Regulatory Guide specifies three modes of transportation that must be considered for chlorine manufactured, stored or used by industries in the vicinity of the control room: railroads, highways, and waterways.

#### 4. Earlier Surveys Of Chlorine Shipment

The LaSalle County Final Safety Analysis Report (FSAR) Section 2.1.1 describes the location of the plant and transportation routes near the plant. FSAR Section 2.2.2 describes nearby industrial, transportation, and military facilities. All industrial facilities are located outside of a five-mile radius of the plant, therefore, chlorine used or stored at these facilities need not be considered in evaluating control room habitability. A survey of these industries was conducted in 1975 to determine the shipment of chlorine by three modes of transportation, U.S. Highway 6 and State Highway 47, the nearest highways to the station used by these industries and the Chicago Rock Island and Pacific, the nearest railroad, are all located farther than five miles from the station. Therefore, transportation of chlorine by these two modes of transportation need not be considered in the control room habitability analysis.

FSAR Section 2.2.2.4 describes river traffic on the Illinois River passing the site. Section 2.2.3.1.c concluded the only transportation route potentially carrying chlorine within five miles of the station was the Illinois River, which is located approximately 4.7 miles north of the station. However, the available data on commodities transported on the Illinois River (FSAR Table 2.204) did not differentiate barge shipments of chlorine from other chemicals. The survey found a small quantity of chlorine was used by the Illinois Nitrogen Corporation, located at river mile 248.7, approximately five miles north of the station, however, there was not sufficient information available if it was receiving chlorine supply by barge. In order to expedite the licensing process, chlorine detectors were provided in the control room HVAC system intake air ducts.

To supplement the 1975 survey and to obtain additional specific information on chlorine shipments, a survey was conducted during January-February 1986 to determine whether chlorine was, in fact, transported in barges on the Illinois River.

Information was collected from the U.S. Army Corps of Engineers, the U.S. Coast Guard, and Lockmasters for Starved Rock and Dresden Dams. None of the sources had information suggesting chlorine is transported on the Illinois River. Because none of the barge operators, barge terminals, or chemical companies reported chlorine shipments on the Illinois River and neither of the lockmasters were aware of any chlorine passing through their locks, it was concluded that chlorine was not shipped on the river in significant quantities.

#### 5. Year 2000 Survey of Chlorine Shipments

The criteria used for the 2000 survey limited sites of interest to those located between Marseilles and Dresden Island Locks and included facilities within and outside of the five-mile radius of LaSalle Station. Previous surveys were reviewed and updated from 1997, 1998 and 1999 Tier Two Reports from Grundy and LaSalle County ESDA's.

Table 1 shows results of the fourteen barge terminals, chemical companies, water treatment plants, and potential chlorine users contacted. None of the barge terminals located between the closest upstream and downstream dams handle chlorine. None of the chemical companies, water treatment plants or other potential chlorine users send or receive chlorine on the Illinois River. Four facilities were identified using small quantities of chlorine. One of those sites is located within five miles of LaSalle Station. All four facilities stated their chlorine is transported and stored in 150 lb. cylinders.

CSX operates the closest regularly traveled railroad to LaSalle Station. The railroad is located outside the five-mile radius of LaSalle Station and per the 1998 survey, no chlorine tank cars were shipped on this railroad. This survey could not confirm the transportation of chlorine on the railroad because CSX did not respond to repeated requests for information.

Table 2 shows the results of seven government agencies, public officials, and trade organizations contacted. The Chlorine Institute reported no chlorine is transported on the Illinois River, and has no knowledge of any chlorine producer or distributor located on the river. Table 3 shows the active chlorine barges in the United States and Canada, as reported by the Chlorine Institute. Lockmasters for Starved Rock, Marseilles and Dresden Island Locks are not aware of any chlorine passing through their locks. The Corps of Engineers verified that no chlorine shipments in 1997, 1998 and 1999 went past mile point 252 on the Illinois River. Mile Point 252 is located within the five-mile radius of LaSalle Station.

LaSalle Station HAZMAT Coordinator reported no chlorine used or stored on-site.

Although four facilities were identified using small amounts of chlorine, there was no indication chlorine is transported on the Illinois River, and several sources volunteered the opinion that chlorine is not transported on the river.

#### 6. Conclusion of Findings

The 2000 survey concludes chlorine is not transported in significant quantities on the Illinois River and within a five-mile radius of LaSalle Station. Small quantities of chlorine are used and stored in 150 lb.cylinders at four sites. One of the four sites identified is within the five-mile radius of LaSalle Station. Regulatory Guide 1.95 C.3 states that only single container quantities exceeding 150 lb. need to be considered for control room ventilation requiring automatic chlorine protection features. Therefore, the 2000 survey concludes that chlorine detectors are not required for the LaSalle County Station.

Table 1. Barge Terminals Chemical Companies, Water Treatment Plants, and Other Potential Chlorine Users in Towns on the Illinois River in the Vicinity of LaSalle Station

|                                                    | County LaSalle | Address S. Main Street                            | <b>Phone</b> (815) 357-8741 | Distance to LaSalle Station <5 miles | Chlorine<br>Identified?         |
|----------------------------------------------------|----------------|---------------------------------------------------|-----------------------------|--------------------------------------|---------------------------------|
|                                                    | LaSalle        | Seneca<br>POC: Bob Matlock<br>2100 E. Broadway    | (815) 795-4151              | >5 miles                             | None                            |
| `                                                  |                | Marseilles<br>POC: John Moyer                     |                             |                                      |                                 |
| Morris Sewage Treatment Plant                      | Grundy         | N. River Road Morris POC: Junior King             | (815) 942-0643              | >5 miles                             | Yes<br>10 – 150 lb<br>cylinders |
|                                                    | LaSalle        | P.O. Box 88 Marseilles POC: Don Jackson           | (815) 795-5111              | >5 miles                             | None                            |
| Reichhold Chemicals, Inc.                          | Grundy         | Dupont Road<br>Seneca<br>POC: Bob Storm           | (815) 357-6726              | >5 miles                             | None                            |
| Shipyard Terminal and<br>Industrial Park           | LaSalle        | P.O. Box 380<br>Seneca<br>POC: George Lamb        | (815) 357-6721              | <5 miles                             | None                            |
| Wastewater Treatment<br>Facility                   | LaSalle        | #2 Spicer Lane<br>Marseilles<br>POC: Brian Miller | (815) 795-2150              | >5 miles                             | Yes<br>5 – 150 lb<br>cylinders  |
| Village of Seneca Wastewater<br>Treatment Facility | LaSalle        | 301 W. Union<br>Seneca<br>POC: Jerry Lowe         | (815) 357-8406              | <5 miles                             | Yes<br>4 – 150 lb<br>cylinders  |

Table 1 (continued). Barge Terminals Chemical Companies, Water Treatment Plants, and Other Potential Chlorine Users in Towns on the Illinois River in the Vicinity of LaSalle Station

| Сотрану                  | County  | Address                                             | Phone          | Distance to<br>LaSalle Station | Chlorine<br>Identified?        |
|--------------------------|---------|-----------------------------------------------------|----------------|--------------------------------|--------------------------------|
| ADM/Growmark             | LaSalle | Towpath Road Ottawa POC: Gary Boyd                  | (815) 433-3635 | >5 miles                       | None                           |
| Field Container Company  | LaSalle | 240 Main Street<br>Marseilles<br>POC: Don Frederick | (815) 795-2111 | >5 miles                       | None                           |
| CF Industries, Inc       | Grundy  | 737 E. DuPont Road<br>Seneca<br>POC: Ron Witalka    | (815) 357-8811 | >5 miles                       | None                           |
| Evenson Energies LLC     | Grundy  | 2019 Dunn Road<br>Morris<br>POC: Ginger Younker     | (815) 942-5800 | >5 miles                       | None                           |
| Explosive Energies, Inc  | Grundy  | 7700 DuPont Road<br>Morris<br>POC: Ginger Younker   | (815) 942-5802 | >5 miles                       | None                           |
| LaRoche Industries, Inc. | Grundy  | 7700 W Dupont Road<br>Morris<br>POC: Tony Massa     | (815) 357-8711 | >5 miles                       | Yes<br>6 – 150 lb<br>cylinders |

Table 2. Government Agencies, Public Officials and Trade Organizations

| Organization                                                                    | Information that Chlorine is Transported on the Illinois River |
|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| Chlorine Institute, Washington D.C.                                             | None                                                           |
| Illinois Department of Transportation, Hazardous Materials Division, Chicago IL | None                                                           |
| Lockmaster, Dresden Island, Illinois                                            | None                                                           |
| Lockmaster, Starved Rock Lock and Dam, Utica IL                                 | None                                                           |
| U.S. Army Corps of Engineers, Planning Division, Rock Island, IL                | None                                                           |
| Emergency Services and Disaster Agency of Grundy County, Morris IL              | Potential                                                      |
| Emergency Services and Disaster Agency of LaSalle County, Ottawa IL             | Potential                                                      |
|                                                                                 |                                                                |

Table 3. Active Chlorine Barges in the United States and Canada

| Owner               | Reporting Marks | Barge Numbers | Nominal Cl <sub>2</sub><br>Capacity (Tons) |
|---------------------|-----------------|---------------|--------------------------------------------|
| CXY Chemicals (1)   | Hyak King* (B)  |               | 1350 (15 x 90)                             |
| Olin (7)            |                 | 601 – 603     | 1110 (6 x 185)                             |
|                     | OMCC            | 651 & 652     | $1100 (4 \times 275)$                      |
|                     |                 | 654 & 655     | 1100 (4 x 275)                             |
| Elf Atochem (2)     | Tyee* (A)       |               | 1200 (4 x 300)                             |
|                     | Totem* (A)      |               | 1200 (4 x 300)                             |
| PPG Industries (12) | PPG             | 400 – 407     | $1100 (4 \times 275)$                      |
|                     |                 | 409           | 1200 (4 x 300)                             |
|                     |                 | 410-411       | $1100 (4 \times 275)$                      |
|                     | R. D. Osucha    |               | $1200 (4 \times 300)$                      |

Vessels marked with an asterisk (\*) are oceangoing barges that operate in ocean and sounds on the Pacific Northwest. All other barges operate on inland waterways.

Vessels marked with (A) or (B) are oceangoing barges with multi-cargo configurations:

- (A) Chlorine in deck tanks
  Caustic and/or sodium chlorate in wing tanks
- (B) Caustic soda in hull tanks Chlorine in 90 ton tank cars on deck

#### 9

# 7. References

Chlorine Institute, Washington, D.C., Mr Jack Ahearn, Personal Conservation with ComEd on 09/14/00, (202) 872-4723

Illinois Department of Transportation, Hazardous Materials Division, Chicago, Illinois, (217) 785-3064, Mr. Terry Moore, Personal Conversation with ComEd on 09/05/00.

Lockmaster, Dresden Island Lock and Dam, Dresden, Illinois, (815) 942-0840 x 6732, Mr. Jeff Blazekovich, Personal Conversation with ComEd on 09/08/00. Lockmaster, Marseilles Lock and Dam, Marseilles, Illinois, (815) 795-2593, Mr. Rick Vespar, Personal Conversation with ComEd on 10/10/00. Lockmaster, Starved Rock Lock and Dam, Utica, Illinois, (815) 667-4114, Mr. Mark Witalka, Personal Conversation with ComEd on 09/05/00.

U.S. Army Corps of Engineers, Planning Division, Rock Island, Illinois, (309) 794-5396, Mr. Jack Carr, Personal Conversation with ComEd on 09/05/00. Grundy County Emergency Services and Disaster Agency, (815) 941-3212, Mr. Jim Lutz, Meeting with ComEd on 09/14/00.

LaSalle County Emergency Services and Disaster Agency, (815) 433-5622, Mr. Emerson Tidds, Meeting with ComEd on

Cargill Inc., Seneca, Illinois, (815) 357-8741, Mr. Bob Matlock, Personal Conversation with ComEd on 10/03/00.

Royster-Clark, Marseilles, Illinois, (815) 795-4151, Mr. John Moyer, Personal Conversation with ComEd on 10/03/00.

Morris Sewage Treatment Plant, Morris, Illinois, (815) 942-0643, Mr. Junior King, Personal Conversation with ComEd on

PCS Phosphates, Marseilles, Illinois, (815) 795-5111, Mr. Don Jackson, Personal Conversation with ComEd on 10/03/00.

Reichold Chemicals, Inc., Seneca, Illinois, (815) 357-6726, Mr. Bob Storm, Personal Conversation with ComEd on 10/03/00.

Shipyard Terminal and Industrial Park, Seneca, Illinois, (815) 357-6721, Mr. George Lamb, Personal Conversation with ComEd on 10/03/00. Wastewater Treatment Facility, Marseilles, Illinois, (815) 795-2150, Mr. Brian Miller, Personal Conversation with ComEd on 10/03/00.

Village of Seneca Wastewater Treatment Facility, Seneca, Illinois, (815) 357-8406, Mr. Jerry Lowe, Personal Conversation with ComEd on 10/03/00.

ADM/Growmark, Ottawa, Illinois, (815) 433-3635, Mr. Gary Boyd, Personal Conversation with ComEd on 10/03/00.

Field Container Company, Marseilles, Illinois, (815) 795-2111, Mr. Don Frederick, Personal Conversation with ComEd on

CF Industries, Inc., Seneca, Illinois, (815) 357-8811, Mr. Ron Witalka, Personal Conversation with ComEd on 10/03/00.

Evenson Energies, LLC, Morris, Illinois, (815) 942-5800, Ms. Ginger Younker, Personal Conversation with ComEd on 10/03/00 Explosive Energies, Inc., Morris, Illinois, (815) 942-5802, Ms. Ginger Younker, Personal Conversation with ComEd on 10/03/00. LaRoche Industries, Inc., Morris, Illinois, (815) 357-8711, Mr. Tony Massa, Personal Conversation with ComEd on 10/03/00.

LaSalle County Generating Station, Marseilles, (815) 357-6761 x 2943, Mr. Fred Bevington, Personal Conversation with ComEd on 10/04/00