VERMONT YANKEE NUCLEAR POWER CORPORATION

185 OLD FERRY ROAD, PO BOX 7002, BRATTLEBORO, VT 05302-7002 (802) 257-5271

May 15, 2001 BVY 01-41

Sex Ba

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Reference:

(a) Letter, VYNPS to USNRC, "Changes to the Off-site Dose Calculation

Manual made during 2000," BVY 01-42, dated May 15, 2001.

Subject:

Vermont Yankee Nuclear Power Station

License No. DPR-28 (Docket No. 50-271)

2000 Annual Radioactive Effluent Release Report

In accordance with Vermont Yankee (VY) Technical Specification (TS) 6.6.D, attached is a copy of the 2000 Annual Radioactive Effluent Release Report.

In addition, VY TS 6.7.B requires reporting of changes to the Off-site Dose Calculation Manual (ODCM) that were made during 2000. A summary of the changes made in Revisions 26 and 27 of the ODCM is provided in Appendix H of the subject report. Copies of the revised pages of the ODCM associated with Revision 26 and a complete copy through Revision 27 were submitted concurrent with this letter via Reference (a).

We trust that the information provided is adequate; however, should you have questions or require additional information, please contact Mr. David P. Tkatch at (802) 258-5500.

Sincerely,

VERMONT YANKEE NUCLEAR POWER CORPORATION

Gautam Sen

Licensing Manager

Attachment

cc: USNRC Region 1 Administrator

USNRC Resident Inspector - VYNPS

USNRC Project Manager - VYNPS

Vermont Department of Public Service

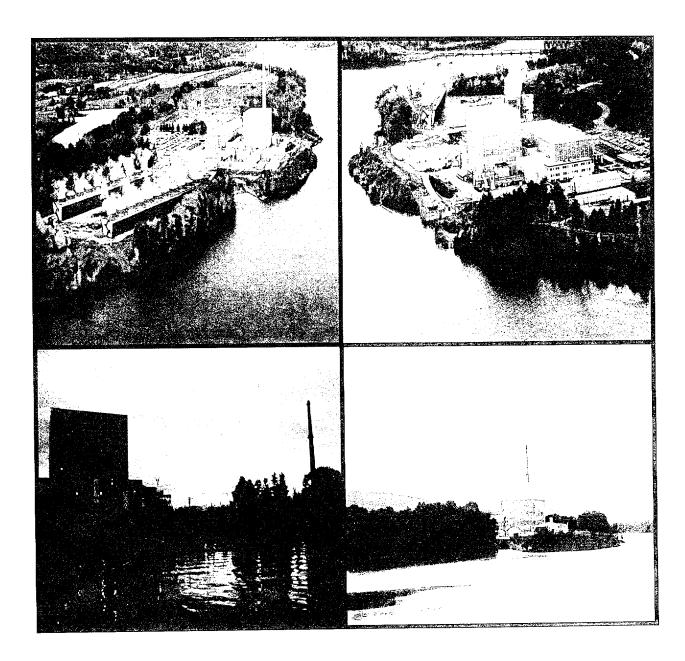
Vermont Division of Occupational and Radiological Health

Massachusetts Metropolitan District Commission

Massachusetts Department of Public Health

SUMMARY OF VERMONT YANKEE COMMITMENTS

BVY NO.: <u>01-41</u>


The following table identifies commitments made in this document by Vermont Yankee. Any other actions discussed in the submittal represent intended or planned actions by Vermont Yankee. They are described to the NRC for the NRC's information and are not regulatory commitments. Please notify the Licensing Manager of any questions regarding this document or any associated commitments.

COMMITMENT	COMMITTED DATE OR "OUTAGE"
None	N/A
·	

VYAPF 0058.04 AP 0058 Original Page 1 of 1

Vermont Yankee Nuclear Power Station Vernon, Vermont

2000 Radioactive Effluent Release Report

RADIOACTIVE EFFLUENT RELEASE REPORT FOR 2000 INCLUDING ANNUAL RADIOLOGICAL IMPACT ON MAN

Vermont Yankee Nuclear Power Station

May 2001

TABLE OF CONTENTS

		Page	2
1.0	INTRO	DUCTION	L
2.0	METE	ROLOGICAL DATA2)
3.0	DOSE	ASSESSMENT	3
	3.1	Doses From Liquid Effluents	3
	3.2	Doses From Noble Gases	
	3.3	Doses From Iodine-131, Iodine-133, Tritium, and Radionuclides in Particulate	
		Form With Half-Lives Greater Than 8 Days4	1
	3.4	Whole-Body Doses in Unrestricted Areas From Direct Radiation	
	3.5	Doses From On-Site Disposal of Septic Waste and Cooling Tower Silt	5
	3.6	On-Site Recreational Activities	
REFE	RENCE		7
APPE	NDIX A	- SUPPLEMENTAL INFORMATION	1
APPE	NDIX B	LIQUID HOLDUP TANKSB-	l
APPE	ENDIX C	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION	i
APPE	ENDIX D	- RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION	1
APPE	ENDIX E	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAME-	L
APPE	ENDIX F	LAND USE CENSUSF-1	L
APPE	ENDIX G	PROCESS CONTROL PROGRAM	1
APPE	ENDIX H	- OFF-SITE DOSE CALCULATION MANUALH-	1
APPE	ENDIX I	RADIOACTIVE LIQUID, GASEOUS AND SOLID WASTE TREATMENT SYSTEMSI-	l
APPE	ENDIX J	ON-SITE DISPOSAL OF SEPTIC WASTE AND COOLING	Ĺ

LIST OF TABLES

Number	<u>Title</u>	Page
lA	First and Second Quarters, 2000 Gaseous Effluents - Summation of All Releases	8
lA	Third and Fourth Quarters, 2000 Gaseous Effluents Summation of All Releases	9
1B	First and Second Quarters, 2000 Gaseous Effluents - Elevated Releases	10
lB	Third and Fourth Quarters, 2000 Gaseous Effluents - Elevated Releases	11
1C	First and Second Quarters, 2000 Gaseous Effluents - Ground Level Releases	12
1C	Third and Fourth Quarters, 2000 Gaseous Effluents - Ground Level Releases	13
1D	Gaseous Effluents - Nonroutine Releases	14
2A	Liquid Effluents Summation of All Releases	15
2B	Liquid Effluents Nonroutine Releases	16
3	First and Second Quarters, 2000 Solid Waste and Irradiated Fuel Shipments	17
3	Third and Fourth Quarters, 2000 Solid Waste and Irradiated Fuel Shipments	19
4A	Maximum Off-Site Doses/Dose Commitments to Members of the Public from Liquid and Gaseous Effluents for 2000 (10CFR50, Appendix I)	21
4B	Maximum Annual Dose Commitments from Direct External Radiation, Plus Liquid and Gaseous Effluents for 2000 (40CFR190)	22
4C	Receptor Locations for Vermont Yankee	23
4D	Usage Factors for Various Gaseous Pathways at Vermont Yankee	24
4E	Environmental Parameters for Gaseous Effluents at Vermont Yankee	25

5A to 5H	Annual Summary of Upper Level Joint Frequency Distribution	27-34
6A to 6H	Annual Summary of Lower Level Joint Frequency Distribution	35-42

RADIOACTIVE EFFLUENT RELEASE REPORT FOR 2000 [INCLUDING ANNUAL RADIOLOGICAL IMPACT ON MAN]

1.0 <u>INTRODUCTION</u>

Tables 1 through 3 list the recorded radioactive liquid and gaseous effluents and solid waste for the year, with data summarized on a quarterly basis for both liquids and gases. Table 4A summarizes the estimated radiological dose commitments from all radioactive liquid and gaseous effluents released during the year 2000 in response to the ALARA objectives of 10CFR50, Appendix I. Also included on Table 4A is the estimate of direct dose from fixed station sources along the limiting west site boundary line. Tables 5A through 6H report the cumulative joint frequency distributions of wind speed, wind direction, and atmospheric stability for the 12-month period, January to December 2000. Radioactive effluents reported in Tables 1 and 2 were used to determine the resulting doses for 2000.

As required by Technical Specification 6.6.D and ODCM Section 10.1, dose commitments resulting from the release of radioactive materials in liquids and gases during the reporting period were estimated in accordance with the "Vermont Yankee Nuclear Power Station Off-Site Dose Calculation Manual" (ODCM). These dose estimates were made using a "Method II" analysis as described in the ODCM. A "Method II" analysis incorporates the methodology of Regulatory Guide 1.109 (Reference 3) and actual measured meteorological data recorded during the reporting period.

As required by ODCM Section 10.1, this report shall also include an assessment of the radiation doses from radioactive effluents to member(s) of the public due to allowed recreational activities inside the site boundary during the year. For this reporting period, the only recreational activity permitted was employee access to a boat launching ramp adjacent to the intake structure. The assessment of recreational activities is described in Section 3.6.

Assessment of radiation doses (including direct radiation) to the likely most exposed real member(s) of the public for the calendar year for the purposes of demonstrating conformance with 40CFR190, "Environmental Radiation Protection Standards for Nuclear Power Operations," are also required to be included in this report if the conditions indicated in ODCM 3.4.1, "Total Dose," have been exceeded during the year. Since the conditions indicated in the action statement under ODCM 3.4.1 were not entered into during the year, no additional radiation dose assessments are required. However, Table 4B does provide the combination of doses and dose commitments from plant effluents and direct radiation sources for the limiting member of the public off-site as a demonstration of compliance with the dose standards of 40CFR190.

All calculated dose estimates for this reporting period are below the dose criteria of 10CFR Part 50, Appendix I, and 40CFR190.

Appendices B through H indicate the status of reportable items per the requirements of Technical Specification 6.7.B.1.c, Technical Requirements Manual (TRM) Section 6.12.A.1, and ODCM Section 10.1.

2.0 METEOROLOGICAL DATA

Meteorological data was collected during this reporting period from the site's 300-foot met tower located approximately 2,200 feet northwest of the reactor building, and about 1,400 feet from the plant stack. The 300-foot tower is approximately the same height as the primary plant stack (94 meters) and is designed to meet the requirements of Regulatory Guide 1.23 for meteorological monitoring.

X/Q and D/Q values were derived for all receptor points from the site meteorological record for each quarter using a straight-line airflow model. All dispersion factors have been calculated employing appropriate source configuration considerations, as described in Regulatory Guide 1.111 (Reference 1). A source depletion model as described in "Meteorology and Atomic Energy -1968" (Reference 2) was used to generate deposition factors, assuming a constant deposition velocity of 0.01 m/sec for all stack (elevated) releases. Changes in terrain elevations in the site environment were also factored into the meteorological models as appropriate.

Table 4C lists the distances from the plant stack to the nearest site boundary, resident, and milk animal in each of the 16 principle compass directions as determined during the 2000 land use census. These locations were used in the calculation of atmospheric dispersion factors.

3.0 DOSE ASSESSMENT

3.1 <u>Doses From Liquid Effluents</u>

The Offsite Dose Calculation Manual (ODCM) Control 3/4.2.2 limits total body (1.5 mrem per quarter, and 3 mrem per year) and organ doses (5 mrem per quarter, and 10 mrem per year) from liquid effluents to a member of the public to those specified in 10CFR Part 50, Appendix I. By implementing the requirements of 10CFR Part 50, Appendix I, Control 3/4.2.2 assures that the release of radioactive material in liquid effluents will be kept "as low as is reasonably achievable."

For periods in which liquid waste discharges actually occur, the exposure pathways that could exist are fish, direct exposure from river shoreline sedimentation, milk and meat via animal ingestion of the Connecticut River water, and meat, milk and vegetable pathways via crop irrigation with water withdrawn from the Connecticut River. The drinking water and aquatic invertebrate pathways do not exist down river of the Vermont Yankee plant.

There were no recorded liquid radioactive waste discharges during the report period, and therefore, no dose impact.

3.2 Doses From Noble Gases

ODCM Control 3/4.3.2 limits the gamma air dose (5 mrad per quarter, and 10 mrad per year) and beta air (10 mrad per quarter, and 20 mrad per year) dose from noble gases released in gaseous effluents from the site to areas at and beyond the site boundary to those specified in 10CFR Part 50, Appendix I. By implementing the requirements of 10CFR Part 50, Appendix I, Control 3/4.3.2 assures that the releases of radioactive noble gases in gaseous effluents will be kept "as low as is reasonably achievable."

Dose estimates due to the release of noble gases to the atmosphere are typically calculated at the site boundary, nearest resident in each of the sixteen principal compass directions, the point of highest off-site ground level air concentration of radioactive materials, and for each of the milk animal locations located within five miles of the plant.

The maximum estimated air doses at or beyond the site boundary from noble gas effluents for 2000 are listed in Table 4A. The maximum annual dose commitments to the nearest resident (40CFR190) from noble gas effluents for 2000 are included in the gas pathway dose assessment in Table 4B. These dose estimates are based on dose modeling which follows the guidance of the NRC Regulatory Guide 1.109 Revision 1.

3.3 <u>Doses From Iodine-131, Iodine-133, Tritium, and Radionuclides in Particulate Form</u> With Half-Lives Greater Than 8 Days

ODCM Control 3/4.3.3 limits the organ dose to a member of the public from iodine-131, iodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days (hereafter called iodines and particulates) in gaseous effluents released from the site to areas at and beyond the site boundary to those specified in 10CFR Part 50, Appendix I (7.5 mrem per quarter, and 15 mrem per year). By implementing the requirements of 10CFR Part 50, Appendix I, ODCM 3/4.3.3 assures that the releases of iodines and particulates in gaseous effluents will be kept "as low as is reasonably achievable."

Exposure pathways that could exist as a result of the release of iodines and particulates to the atmosphere include external irradiation from activity deposited onto the ground surface, inhalation, and ingestion of vegetables, meat and milk. Dose estimates were made at the site boundary and nearest resident in each of the sixteen principal compass directions, as well as all milk animal locations within five miles of the plant. The nearest resident and milk animals in each sector were identified by the most recent Annual Land Use Census as required by ODCM Control 3/4.5.2 (see Table 4C). Conservatively, a vegetable garden was assumed to exist at each milk animal and nearest resident location. Furthermore, the meat pathway was assumed to exist at each milk cow location since this data category is not part of the annual land use census. Doses were also calculated at the point of maximum ground level air concentration of radioactive materials in gaseous effluents and included the assumption that the inhalation, vegetable garden, and ground plane exposure pathways exist for an individual with a 100 percent occupancy factor.

It is assumed that milk and meat animals are free to graze on open pasture during the second and third quarters with no supplemental feeding. This assumption is conservative since most of the milk animals inventoried in the site vicinity are fed stored feed throughout the entire year with only limited grazing allowed during the growing season. It has also been assumed that only 50 percent of the iodine deposited from gaseous effluent is in elemental form (I₂) and is available for uptake (see p. 26, Reference 3). During the first and fourth quarters, the milk animals are assumed to receive only stored feed. Usage factors for gaseous effluents are listed by age group and pathway in Table 4D. Table 4E provides other dose model parameter assumptions used in the dose assessments.

The resultant organ doses were determined after adding the contributions from all pathways at each location. Doses were calculated for the whole body, GI-tract, bone, liver, kidney, thyroid, lung and skin for adults, teenagers, children and infants. The maximum estimated quarterly and annual organ doses to any age group due to iodines and particulates at any of the off-site receptor locations are reported in Table 4A. These estimated organ doses are well below the 10CFR Part 50, Appendix I dose criteria of ODCM Control 3/4.3.3.

The maximum estimated doses to members of the public from iodines and air particulate effluents for 2000 are listed in Table 4A. The maximum annual dose commitments to the nearest resident (40CFR190) from iodines and air particulate gas effluents for 2000 are included in the gas pathway of Table 4B. These dose estimates are

based on dose modeling which follows the guidance of the NRC Regulatory Guide 1.109 Revision 1.

3.4 Whole-Body Doses in Unrestricted Areas From Direct Radiation

The major source of direct radiation and skyshine from the fixed station sources is due to N-16 decay in the Turbine Building. Because of the orientation of the Turbine Building on the site, and the shielding effects of the adjacent Reactor Building, only the seven westerly sectors (SSW to NNW) see any significant direct radiation.

High Pressure Ionization Chamber (HPIC) measurements have been made in the plant area in order to estimate the direct radiation from the station. The chamber was located at a point along the west site boundary, which has been determined to receive the maximum direct radiation from the plant. Using measurements of dose rate made while the plant operated at different power levels, from shutdown to 100 percent, the total integrated dose from direct radiation over each three month period was determined by considering the quarterly gross megawatts generated. Field measurements of exposure, in units of Roentgen, were modified by multiplying by 0.6 to obtain whole-body dose equivalents, in units of rem, in accordance with recommendations of HASL Report 305 (Reference 4) for radiation fields resulting from N-16 photons.

The other fixed sources contributing direct radiation and skyshine to the site boundary are from low level radioactive waste stored in the North Warehouse, the Low Level Waste Storage Pad Facility, and old turbine rotors and casings in the turbine storage facility. The annual dose is based on dose rate measurements in these three storage facilities and determined at the same most restrictive site boundary dose location as that for N-16 decay from the Turbine Building.

The estimated direct radiation dose from all major sources combined for the most limiting site boundary location is listed on Table 4A. These site boundary doses assume a 100 percent occupancy factor, and take no credit for the shielding effect of any residential structure.

Table 4B lists the combination of direct radiation and effluent release doses at the limiting nearest residence for the purpose of demonstrating compliance with the dose standards contained in 40CFR190. For direct radiation, no credit for actual occupancy time is taken (i.e., occupancy is equal to 100%).

3.5 <u>Doses From On-Site Disposal of Septic Waste and Cooling Tower Silt</u>

Off-Site Dose Calculation Manual, Appendices B and F, require that all applications of septage and the cooling tower silt within the approved designated on site disposal areas be limited to ensure the dose to a maximally-exposed individual during the period of Vermont Yankee site control be maintained at less than 1 mrem/year to the whole body and any organ. After the period associated with Vermont Yankee operational control, the dose to the inadvertent intruder is to be maintained at less than 5 mrem/year. The projected dose from on-site disposals of septic waste, cooling tower silt, and other sand/soil is given in Appendix J of this report.

3.6 On-Site Recreational Activities

During the summer of 2000, limited access to a boat launching ramp located on-site just north of the intake structure was permitted for employees, their families and guests. An assessment of the Thermoluminescent Dosimeters (TLD's) situated at the boat launch, on the boat launch access gate and along the access road to the boat launch were used to estimate the direct radiation exposure rate for this recreational activity. Security access records show 11 days to be the highest amount of usage for a single individual. A usage factor of 132 hours/year was calculated using a conservative occupancy rate of 12 hours/day. Most visits were 6 hours or less in duration. The shoreline recreational usage factor in Regulatory Guide 1.109 (Table E-5), is 67 hours/year. The calculated shoreline recreational usage factor of 132 hours/year was applied to the highest TLD since it is more conservative than the regulatory guide value. The resulting individual dose is estimated to be 1.3 mrem. This is considered conservative since the TLD results at the boat ramp (most probable occupancy location) were more than three times lower than the TLD along the access road as used in this calculation. There was no significant gaseous inhalation or ground deposition contribution to dose since the close proximity of the ramp area to the 94 meter tall plant stack kept gaseous effluents well over head.

REFERENCES

- 1. Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," U.S. Nuclear Regulatory Commission, Office of Standards Development, March 1976.
- 2. Meteorology and Atomic Energy, 1968, Section 5-3.2.2, "Cloud Depletion," pg. 204. U. S. Atomic Energy Commission, July 1968.
- 3. Regulatory Guide 1.109, "Calculation of Annual Doses to Man From Routine Release of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I," U. S. Nuclear Regulatory Commission, Office of Standards Development, Revision 1, October 1977.
- 4. W. M. Lowder, P. D. Raft, and G. dePlanque Burke, "Determination of N-16 Gamma Radiation Fields at BWR Nuclear Power Stations," Health and Safety Laboratory, Energy Research and Development

TABLE 1A

Vermont Yankee

Effluent and Waste Disposal Annual Report

First and Second Quarters, 2000

Gaseous Effluents - Summation of All Releases

		Unit	Quarter 1	Quarter 2	Est. Total Error, %
Α.	Fission and Activation Gases		:		
1.	Total release	Ci	0.00E+00	0.00E+00	±2.30E+01
2.	Average release rate for period	μCi/sec	0.00E+00	0.00E+00	
3.	Percent of ODCM limit (1)	%	0.00E+00	0.00E+00	
В.	Iodines				
1.	Total Iodine	Ci	2.73E-04	1.61E-04	±1.80E+01
2.	Average release rate for period	μCi/sec	3.47E-05	2.05E-05	
3.	Percent of ODCM limit (2)	%	1.28E-02	1.32E-02	
C.	Particulates				
1.	Particulates with T-1/2>8 days	Ci	9.26E-05	1.12E-05	±1.80E+01
2.	Average release rate for period	μCi/sec	1.18E-05	1.42E-06	
3.	Percent of ODCM limit (3)	%	(3)	(3)	
4.	Gross alpha radioactivity	Ci	2.24E-06	7.31E-07	
D.	Tritium				
1.	Total release	Ci	4.09E+00	3.47E+00	±1.80E+01
2.	Average release rate for period	μCi/sec	5.20E-1	4.41E-01	
3.	Percent of ODCM limit (3)	%	(3)	(3)	

- (1) ODCM Control 3.3.2. for the most limiting of beta air or gamma air dose.
- (2) ODCM Control 3.3.3. for dose from I-131, I-133, Tritium, and radionuclides in particulate form.
- (3) Per ODCM Control 3.3.3, dose contribution from Tritium and particulates are included with Iodine above in Part B.

TABLE 1A (Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2000 Gaseous Effluents - Summation of All Releases

		Unit	Quarter 3	Quarter 4	Est. Total Error, %
A.	Fission and Activation Gases				
1.	Total release	Ci	7.57E+00	0.00E+00	±2.30E+01
2.	Average release rate for period	μCi/sec	9.63E-01	0.00E+00	
3.	Percent of ODCM limit (1)	%	2.22E-01	0.00E+00	
В.	Iodines				
1.	Total Iodine	Ci	1.93E-04	1.49E-05	±1.80E+01
2.	Average release rate for period	μCi/sec	2.45E-05	1.90E-06	
3.	Percent of ODCM limit (2)	%	3.35E-02	1.22E-02	
C.	Particulates				
1.	Particulates with T-1/2>8 days	Ci	3.19E-06	1.65E-04	±1.80E+01
2.	Average release rate for period	μCi/sec	4.06E-07	2.10E-05	
3.	Percent of ODCM limit (3)	%	(3)	(3)	
4.	Gross alpha radioactivity	Ci	0.00E+00	0.00E+00	
D.	Tritium				
1.	Total release	Ci	3.79E+00	4.03E+00	±1.50E+0l
2.	Average release rate for period	μCi/sec	4.82E-01	5.13E-01	
3.	Percent of ODCM limit (3)	%	(3)	(3)	

(1) ODCM Control 3.3.2. for the most limiting of beta air or gamma air dose.

(2) ODCM Control 3.3.3. for dose from 1-131, 1-133, Tritium, and radionuclides in particulate form.

(3) Per ODCM Control 3.3.3, dose contribution from Tritium and particulates are included with Iodine above in Part B.

TABLE 1B Vermont Yankee

Effluent and Waste Disposal Annual Report

First and Second Quarters, 2000

Gaseous Effluents - Elevated Releases

		Continuous Mode		Batch Mode (1)		
		Quarter			Quarter	
	Nuclides Released	Units	1	2	1	2
l .	Fission Gases					
	Krypton-85	Ci	ND	ND		
	Krypton-85m	Ci	ND	ND		
	Krypton-87	Ci	ND	ND		
	Krypton-88	Ci	ND	ND		
	Xenon-133	Ci	ND	ND		
	Xenon-133m	Ci	ND	ND		
	Xenon-135	Ci	ND	ND		
	Xenon-135m	Ci	ND	ND		
	Xenon-138	Ci	ND	ND		
	Unidentified	Ci	ND	ND		
	Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.	Iodines					
-	Iodine-131	Ci	3.16E-05	1.04E-05		
	Iodine-133	Ci	2.41E-04	1.51E-04		
	Iodine-135	Ci	ND	ND		
	Total for Period	Ci	2.73E-04	1.61E-04	0.00E+00	0.00E+00
	Total for Teriod	CI	2.73E-04	1.0112-04	0.002700	0.0017700
3.	Particulates	,				
	Strontium-89	Ci	ND	1.12E-05		
	Strontium-90	Ci	ND	ND		
	Cesium-134	Ci	ND	ND		
	Cesium-137	Ci	ND	ND		
	Barium-Lanthanum-140	Ci	ND	ND		
	Manganese-54	Ci	ND	ND		
	Chromium-51	Ci	7.10E-05	ND		
	Cobalt-58	Ci	ND	ND		
	Cobalt-60	Ci	ND	ND		
	Cerium-141	Ci	ND	ND		
	Zinc-65	Ci	ND	ND		
	Total for Period	Ci	7.10E-05	1.12E-05	0.00E+00	0.00E+00

There were no batch mode gaseous releases for this reporting period. Not Detected at the plant stack

(1) ND

TABLE IB (Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2000 Gaseous Effluents - Elevated Releases

		Continuous Mode			Batch Mode (1)	
			Qua	rter	Quarter	
	Nuclides Released	Units	3	4	3	4
1.	Fission Gases					
	Krypton-85	Ci	ND	ND	ND	
	Krypton-85m	Ci	ND	ND	1.21E-01	
	Krypton-87	Ci	ND	ND	6.92E-01	
	Krypton-88	Cj	ND	ND	4.11E-01	
	Xenon-133	Ci	ND	ND	5.40E-02	
	Xenon-133m	Ci	ND	ND	ND	
	Xenon-135	Ci	ND	ND	8.85E-01	
	Xenon-135m	Ci	ND	ND	1.22E+00	
	Xenon-138	Ci	ND	ND	4.19E+00	
	Unidentified	Ci	ND	ND	ND	
	Total for Period	Ci	0.00E+00	0.00E+00	7.57E+00	0.00E+00
2.	Iodines					
	Iodine-131	Ci	3.73E-05	1.49E-05		
	Iodine-133	Ci	1.56E-04	ND		
	Iodine-135	Ci	ND	ND		
	Total for Period	Ci	1.93E-04	1.49E-05	0.00E+00	0.00E+00
3.	Particulates		•			
	Strontium-89	Ci	ND	3.90E-05		
-	Strontium-90	Ci	ND	ND		
	Cesium-134	Ci	ND	ND		
	Cesium-137	Ci	ND	ND		
	Barium-Lanthanum-140	Ci	ND	ND		
	Manganese-54	Ci	ND	ND		
	Chromium-51	Ci	ND	1.02E-04		
	Cobalt-58	Ci	ND	ND		
	Cobalt-60	Ci	ND	ND		
	Cerium-141	Ci	3.19E-06	ND		
	Zinc-65	Ci	ND	2.41E-05		
	Total for Period	Ci	3.19E-06	1.65E-04	0.00E+00	0.00E+00

ND Not Detected at the Plant Stack

TABLE 1C

Vermont Yankee Effluent and Waste Disposal Annual Report First and Second Quarters, 2000 Gaseous Effluents Ground Level Releases (2)

		(Continuous Mode		Batch	Mode
	Ī		Quarter		Qua	arter
	Nuclides Released	Units	1(1)(2)	2	1	2
1.	Fission Gases					
	Krypton-85	Ci	ND			
	Krypton-85m	Ci				
	Krypton-87	Ci	ND			
	Krypton-88	Ci	ND			
	Xenon-133	Ci	ND			
	Xenon-135	Ci	ND			
	Xenon-135m	Ci	ND			
	Xenon-138	Ci	ND			
	Unidentified	Ci	ND			
	Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.	Iodines					
	Iodine-131	Ci	ND			
	Iodine-133	Ci	ND			
	Iodine-I 35	Ci	ND			***
	Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00
3.	Particulates					
<u> </u>	Strontium-89	Ci	ND			
	Strontium-90	Ci	ND			
	Cesium-134	Ci	ND			
	Cesium- 137	Ci	5.68E-06			
	Barium-Lanthanum-140	Ci	ND			
	Manganese-54	Ci	1.18E-06			
	Chromium-51	Ci	ND			
	Cobalt-58	Ci	ND			
	Cobalt-60	Ci	1.09E-05			
	Cerium-141	Ci	ND '			
	Zinc-65	Ci	3.79E-06			
	Iron-55	Cl	ND			
	Total for Period	Ci	2.16E-05	0.00E+00	0.00E+00	0.00E+00

⁽¹⁾ Burning of used oil was treated as a continuous release for the first quarter. Used oil was burned only in the first quarter.

⁽²⁾ The North Warehouse stack was used as a ground level release point for burning of used oil.

ND Not detected in the used oil sample.

TABLE IC (Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2000 Gaseous Effluents - Ground Level Releases

		(Continuous Mode		Batch	Mode
	Ţ		Quar	rter	Qua	ırter
	Nuclides Released	Units	3(1)	4(1)	3(1)	4(1)
1.	Fission Gases					
	Krypton-85	Ci				
	Krypton-85m	Ci				
	Krypton-87	Ci				
	Krypton-88	Ci				
	Xenon-133	Ci				
	Xenon-135	Ci				
	Xenon-135m	Ci				
	Xenon-138	Ci				
	Unidentified	Ci				
	Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.	Iodines					
	Iodine-131	Ci				
	Iodine-133	Ci				
	Iodine-135	Ci				
	Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00
3.	Particulates					
	Strontium-89	Ci				
	Strontium-90	Ci				
	Cesium- 134	Ci				
	Cesium-137	Ci				
	Barium-Lanthanum- 140	Ci				
	Manganese-54	Ci			<u></u>	
	Chromium-51	Ci				
-	Cobalt-58	Ci				
	Cobalt-60	Ci			<u> </u>	
	Cerium-141	Ci				
	Zinc-65	Ci				
	Iron-55	CI				
	Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00

⁽¹⁾ There were no ground level gaseous releases for this reporting period.

TABLE 1D Vermont Yankee Effluent and Waste Disposal Annual Report for 2000 Gaseous Effluents - Nonroutine Releases

There were no nonroutine or accidental gaseous releases during this reporting period.

TABLE 2A Vermont Yankee Effluent and Waste Disposal Annual Report for 2000 Liquid Effluents Summation of All Releases

There were no liquid releases during this reporting period.

TABLE 2B Vermont Yankee Effluent and Waste Disposal Annual Report for 2000 Liquid Effluents Nonroutine Releases

There were no nonroutine or accidental liquid releases during this reporting period.

TABLE 3

Vermont Yankee Effluent and Waste Disposal Annual Report First and Second Quarters, 2000 Solid Waste and Irradiated Fuel Shipments

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (not irradiated fuel)

1. Type of Waste

Shipped from VY for Burial or Disposal	Unit	1 ST and 2 ND Quarters 2000	Est. Total Error, %
a. Spent resins, filter sludges, evaporator bottoms, etc.	m3 Ci	9.7E+00 4.02E+01	±2.50E+01
b. Dry compressible waste, contaminated equipment, etc.	m3 Ci	None	<u>+</u> 2.50E+01
c. Irradiated components, control rods, etc.:	m3 Ci	None	±2.50E+01

Shipped from Processor(s) for Burial or Disposal	Unit	1 ST and 2 ND Quarters 2000	Est. Total Error, %
a. Spent resins, filter sludges, evaporator bottoms, etc.	m3 Ci	None	<u>+</u> 2.50E+01
b. Dry compressible waste, contaminated equipment, etc.	m3 Ci	8.2E+00 1.16E+00	±2.50E+01
c. Irradiated components, control rods, etc.:	m3 Ci	None	<u>+</u> 2.50E+01

2. Estimate of Major Nuclide Composition (By Type of Waste)

a. Spent resins, filter sludges, evaporator bottoms, etc.		b. Dry compressible waste, contaminated equipment, etc.		
Isotope	Percent (1)	Isotope	Percent (1)	
Zinc-65	% 2.10E+01	Iron-55	% 7.40E+01	
Cesium-137	% 1.30E+01	Zinc-65	% 3.00E+00	
Cobalt-60	% 1.80E+01	Cobalt-60	% 1.30E+01	
Cesium-134	% 1.00E+00	Manganese-54	% 5.00E+00	
Manganese-54	% 1.00E+01	Cesium-137	% 2.00E+00	
Iron-55	% 2.60E+01			

(1) Includes only those nuclides that are greater than 1% of the total activity.

Note: Sections A.1. and A.2. above do not include the data for the waste shipments from VY to the processors. The data for this waste will be included in the report that covers the year that this waste is shipped from the processor for burial or disposal.

TABLE 3 (Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report First and Second Quarters, 2000 Solid Waste and Irradiated Fuel Shipments

3. Disposition of solid waste shipments (1st and 2nd Quarters)

Number of	From	From	Mode of Destination		stination
Shipments	VY	Processor	Transportation	Processor	Burial or Disposal
2	Х		Truck		CNS, Inc. Barnwell, SC
24		х	Truck		Envirocare Clive, UT
1	X		Truck	GTS Duratek Oak Ridge, TN	

- B. Irradiated Fuel Shipments (Disposition): None
- C. Additional Data (1st and 2nd Quarters)

Supplemental Information	Shipments from VY to Processors	Shipments from VY for Burial or Disposal	Shipments from Processors for Burial or Disposal
Class of solid waste shipped	1 A	0 A 2 B	A (quantity of containers not required)
Type of containers used	1 Strong Tight	2 Type A	Strong Tight (quantity of containers not required)
Solidification agent or absorbent	None	None	None

TABLE 3 (Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2000 Solid Waste and Irradiated Fuel Shipments

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (not irradiated fuel)

1. Type of Waste

Shipped from VY for Burial or Disposal	Unit	3 rd and 4 th Quarters 2000	Est. Total Error, %
a. Spent resins, filter sludges, evaporator bottoms, etc.	m3 Ci	1.93E+01 5.23E+01	<u>+</u> 2.50E+01
b. Dry compressible waste, contaminated equipment, etc.	m3 Ci	None	<u>+</u> 2.50E+01
c. Irradiated components, control rods, etc.	m3 Ci	6.00E+00 2.31E+04	±2.50E+01

Shipped from Processor(s) for Burial or Disposal	Unit	3 rd and 4 th Quarters 2000	Est. Total Error, %
a. Spent resins, filter sludges, evaporator bottoms, etc.	m3 Ci	None	±2.50E+01
b. Dry compressible waste, contaminated equipment, etc.	m3 Ci	1.37E+01 5.00E-01	<u>+</u> 2.50E+01
c. Irradiated components, control rods, etc.	m3 Ci	None	<u>+</u> 2.50E+01

2. Estimate of Major Nuclide Composition (By Type of Waste)

a. Spent resins, filter sludges, evaporator bottoms, etc.		b. Dry compressible waste, contaminated equipment, etc.		c. Irradiated components, control rods, etc.		
Isotope	Percent (1)	Isotope	Percent (1)	Isotope	Percent (1)	
Zinc-65	% 2.10E+01	Iron-55	% 7.40E+01	Iron-55	% 4.10E+01	
Cesium-137	% 1.30E+01	Zinc-65	% 3.00E+00	Manganese-54	% 1.00E+00	
Cobalt-60	% 1.80E+01	Cobalt-60	% 1.30E+01	Cobalt-60	% 5.50E+01	
Cesium-134	% 1.00E+00	Manganese-54	% 5.00E+00	Nickel-63	% 3.00E+00	
Manganese-54	% 1.00E+01	Cesium-137	% 2.00E+00			
Iron-55	% 2.60E+01					

(1) Includes only those nuclides that are greater than 1% of the total activity.

Note: Sections A.1. and A.2. above do not include the data for the shipments from VY to the processors. The data for this waste will be included in the report that covers the year that this waste is shipped from the processor for burial or disposal.

TABLE 3 (Continued)

Vermont Yankee Effluent and Waste Disposal Annual Report Third and Fourth Quarters, 2000 Solid Waste and Irradiated Fuel Shipments

3. Disposition of Solid Waste Shipments (3rd and 4th Quarters)

Number of	From		Mode of	De	stination
Shipments	VY	From Processor	Transportation	Processor	Burial or Disposal
6	х		Truck		CNS, Inc. Barnwell, SC
19		X	Truck		Envirocare Clive, UT
2	Х		Truck	GTS Duratek Oak Ridge, TN	

- B. Irradiated Fuel Shipments (Disposition): None
- C. Additional Data (3rd and 4th Quarters)

Supplemental Information	Shipments from VY to Processors	Shipments from VY for Burial or Disposal	Shipments from Processors for Burial or Disposal
Class of solid waste shipped	2 A	3 A 1 B 2 C	A (quantity of containers not required)
Type of containers used	2 Strong Tight	4 Type A 2 Type B	Strong Tight (quantity of containers not required)
Solidification agent or absorbent	None	None	None

TABLE 4A

Vermont Yankee

Maximum* Off-Site Doses/Dose Commitments to Members of the Public from Liquid and Gaseous Effluents for 2000 (10CFR50, Appendix I)

	Dose (mrem) ^(a)					
Source	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Year ^(b)	
		Liquid Effluen	ts			
Total Body Dose						
Footnotes	(c)	(c)	(c)	(c)	(c)	
Organ Dose						
Footnotes	(c)	(c)	(c)	(c)	(c)	
		Airborne Efflue	nts			
Iodines and Particulates	9.62E-04	9.92E-04	2.51E-03	9.18E-04	5.38E-03	
Footnotes	(1)	(2)	(2)	(3)		
		Noble Gases				
Beta Air (mrad)			1.90E-03		1.90E-03	
Footnotes	(d)	(d)	(4)	(d)		
Gamma Air (mrad)			1.11E-02		1.11E-02	
Footnotes	(d)	(d)	(5)	(d)		
		Direct Radiation				
See Section 3.4	4.44	4.32	4.26	4.48	17.5 (**)	

- * "Maximum" means the largest fraction of the corresponding 10CFR50, Appendix I dose design objective.
- ** Maximum direct dose point on the West Site Boundary fenceline.
- (a) The numbered footnotes indicate the age group, organ, and location of the dose receptor, where appropriate.
- (b) The yearly dose is the sum of the doses for each quarter, or a full annual assessment.
- (c) There were no liquid releases in this quarter.
- (d) There were no detectable noble gas releases in this quarter.
- (1) CHILD/ THYROID/ NW/ 2900 meters
- (2) INFANT/ THYROID/ NW/ 4260 meters
- (3) CHILD/ THYROID/ NW/ 2600 meters
- (4) SSE/ 600 meters

(5) WNW/ 2400 meters

TABLE 4B Vermont Yankee Maximum Annual Dose Commitments from Direct External Radiation, Plus Liquid and Gaseous Effluents for 2000(*) (40CFR190)

Pathway	Total Body (mrem)	Maximum Organ (mrem)	Thyroid (mrem)
Direct External (a)	13.6	13.6	13.6
Liquids	(c)	(c)	(c)
Gases	7.23E-05	1.42E-04 (d)	5.04E-05
Annual Total (b)	13.6	13.6	13.6

- (*) The location of the projected maximum individual doses from combined direct radiation plus liquid and gaseous effluents correspond to residences at the southwest boundary relative to the plant stack.
- (a) No occupancy time fraction (assumed 100%) or residential shielding credit is assumed which would reduce real doses below the calculated values. Expected direct external radiation doses would be reduced by about 54% with a realistic residential shielding credit and occupancy time (0.7 shielding factor from Regulatory Guide 1.109 and annual occupancy time 6760 hours).
- (b) Annual dose limits contained in the EPA Radiation Protection Standards (40CFR190) equal 25 mrem to the total body and any organ, except 75 mrem to the thyroid of a real member of the public.
- (c) There was no liquid release in 2000.
- (d) Maximum dose to any organ over all age groups.

TABLE 4C
Receptor Locations for Vermont Yankee

Sector	Site Boundary (1) (Meters)	Nearest Resident ⁽²⁾ (Meters)	Nearest Milk Animal ⁽²⁾ Within 10 km (Meters)
N	400	1470	
NNE	350	1400	5520 (Cows)
NE	350	1250	
ENE	400	970	
Е	500	930	
ESE	700	2830	
SE	750	1970	3600 (cows)
SSE	850	2050	5240 (cows)
S	385	450	2220 (cows)
ssw	300	450	
sw	250	410	8200 (cows)
wsw	250	450	9590 (goats)
W	300	620	820 (goats)
WNW	400	1060	7530 (cows)
NW	550	2600	4260 (cows)
NNW	550	2600	

- (1) Vermont Yankee UFSAR Figure 2.2-5.
- (2) The location(s) given are based on data from the Vermont Yankee 2000 Land Use Census relative to the plant stack. Gardens are assumed to be present at all resident locations.

TABLE 4D

Usage Factors for Various Gaseous Pathways at Vermont Yankee

(From Reference 1, Table E-5⁽¹⁾)

Age Group	Veg. (kg/yr)	Leafy Veg. (kg/yr)	Milk (l/yr)	Meat (kg/yr)	Inhalation (m³/yr)
Adult	520	64	310	110	8,000
Тееп	630	42	400	65	8,000
Child	520	26	330	41	3,700
Infant	0	0	330	0	1,400

(1) Regulatory Guide 1.109.

<u>TABLE 4E</u>
Environmental Parameters for Gaseous Effluents at Vermont Yankee

	•								
		Vegetables	ables	Cow	Cow Milk	Goat Milk	Milk	Meat	eat
	Variable	Stored	Leafy	Pasture	Stored	Pasture	Stored	Pasture	Stored
λ,	Agricultural Productivity (kg/m²)	2	2	0.70	2	0.70	2	0.70	2
<u>م</u>	Soil Surface Density (kg/m ²)	240	240	240	240	240	240	240	240
F	Transport Time to User ^(e) (hrs)			48	48	48	48	480	480
TB	Soil Exposure Time (a) (hrs)	131,400	131,400	131,400	131,400	131,400	131,400	131,400	131,400
田田	Crop Exposure Time to Plume (hrs)	1,440	1,440	720	1,440	720	1,440	720	1,440
H		1,440	24	0	2,160	0	2,160	0	2,160
QF	Animals Daily Feed (kg/day)			50	50	9	9	50	50
FP	Fraction of Year on Pasture ^(b)			0.50		0.50		0.50	
FS	Fraction Pasture Feed When on Pasture ^(c)			1		1			

Note: Footnotes on following page.

TABLE 4E (Continued)

Environmental Parameters for Gaseous Effluents at Vermont Yankee

		Veget	Vegetables	Cow	Cow Milk	Goat Milk	Milk	Meat	at
	Variable	Stored	Leafy	Pasture	Stored	Pasture	Stored	Pasture	Stored
FG	FG Fraction of Stored Vegetables Grown in Garden	92.0							
표	Fraction of Leafy Vegetables FL Grown in Garden		1.0						
FI	Fraction Elemental Iodine = 0.5								
Ħ	H Absolute Humidity = $5.6^{(d)}$								

- For Method II dose/dose rate analyses of identified radioactivity releases of less than one year, the soil exposure time for that release may be set at 8,760 hours (one year) for all pathways. B
- assumed to be on pasture is zero (nongrowing season.) For the second and third calendar quarters, the fraction of time on pasture (FP) will be set at For Method II dose/dose rate analyses performed for releases occurring during the first or fourth calendar quarters, the fraction of time animals are 1.0. FP may also be adjusted for specific farm locations if this information is so identified and reported as part of the land use census. **e**
- For Method II analyses, the fraction of pasture feed while on pasture may be set to less than 1.0 for specific farm locations if this information is so identified and reported as part of the land use census. છ
- For Method II analyses, an absolute humidity value equal to 5.6 (gm/m³) shall be used to reflect conditions in the Northeast (Reference: Health Physics Journal, Volume 39 (August),1980; Pages 318-320, Pergammon Press.) ਰ
- Variable T is a combination of variables TF and TS in Regulatory Guide 1.109, Revision 1. <u>ම</u>

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

Ψ	œ	o	۵	ננו	u.	ø	I	_	,	¥	_	Σ		,	-	,	-
Table 5A																1	
Stability Class 5A																1	
Class Frequency = 0.61%															1	1	
Upper Data Collection Station (297 ft)													1			+	
			1			100	9	100	0	CCW	MS	WSW	3	WNW	NN.	MNN	Total
Wind From This Direction ->	1	NA C	2 0	באיר באיר	U	100	35	3	? •	9	=		13	=	15	92	17
<- xepui	1	1	50 75	4 4	787	101 25	193.75	146.25	168.75	191.25	213.75	236.2	258.75	281.25	303.75	326.25	0
VIECTON (DEC) DIRECTION (DEC) GE ->	\perp	22 75	25.25	78.75	101	ľ	146.25	168.75	191.25	Ľ			281.25	303.75	326.25	348.75	360
	\perp	ı		2	1		0	0	0	0	o	0	0	0	0	0	0
330 GE 0.00 and LE 0.85	000	000	000	0.00		8.0	800	000	0.00	0.00		0.00	0.00	0.0	000	0.00	0.00
332 % of all valid observations for this period	80		8	0.00	00'0	0.00	0.0 0	0.0	000	000			8	8	8	8	0.00
														1	,	-	11
334 GT 0.95 and LE 3.50	0	2	-			2	-	0	- 8		ľ		- 8	5 5	346	3 6	20.75
335 % of all valid observations for this stability class	0.0	3.77	-88			3.77	83	800	28.			3 6	3 3	3 8	300	3 8	3
336 % of all valid observations for this period	0.0	0.02	10.0	0.00	0.00	0.02	0.01	89	0.01	000	0.0	3	00	3	S C	3	2
***	ľ		•	Ŧ	-	C	F	-	c	C	٥	0	0	0	0	2	2
338(GT 3.50 and LE 7.50	3 22	2	9	1 80	200	000	7.55	1 89	000	000	00.0		000	0.00	00.0	3.77	18.87
339 % of all valid observations for this stability class	200	3 8	38	3.5	İ	88	200		000	00.0		000	000	0.00	00.0	0.00	0.12
340 % of all valid coservations for this period	3	3	3	3	3	200									-		
341	4	•	F	٦	6	0	0	0	0	0	0	0	-	0	0	7	16
342 GI 7.30 BIN CE 12.30	0.43	377	188				١	0.00	0.00		0.00		1.89	0.00	0.0	13.21	30.19
valid observations for this natiod	90'0	0	0.01	800	80	00:00	0.00		000	00.00	0.00	00.00	0.01	000	8	88	0.19
SAFE																	
242 CT 10 EO and 1 E 18 EO	6	0	0	0	0	0	0	0	0	0			-	-	-	^	2
247% of all valid observations for this stability class	5.66	0.00	0.0	80	8	000	0.00		0.00	0.0			8.	8.	-88	13.21	24.53
3481% of all valid observations for this period	0.03	0.00	0.00					0.00	000		0.00	8	0.01	0.0	0.01	8	0.15
													-	1	(+	c
350 GT 18:50 and LE 24:50	0	0									١		2 6	- 8	5	4 5	J 20
351 % of all valid observations for this stability class	000	00:00					8	000		800			900	3 3	38	2,0	8 8
I valid observations for this period	0.00	0.00	0.00	0.00	9.0	e 8			8		000	8	3	500	3	25.0	3
353								Í			Ĭ	ľ	c	1	-	6	•
354 GT 24.50	0	0										Š	2	2	, 50	200	, 80
355 % of all valid observations for this stability class	00.0	0.00								8			38	38	38	3 8	3 8
% of all valid observations for this period	00.00	0.00	00.0	0.00	90	8	0.00	8	8		000	8	3	3	3	3	3
									_		Ī	ľ	ľ	c	-	9	63
358 All Velocities	10		Ì			Ì		ľ	- 8				000	240	2 2	2 20	300
359 % of all valid observations for this stability class	18.87	7.55	3.77	1.89	0.00	3.77	9.43	8	- 8			3		3,77	8	S.	3

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

N NNE NE ENE ESE SSE SSW SW N N N N N N N N N		8	၁	9	В	L.	ŋ	I	- -	H	¥	-	Σ	z	0	۵	0	œ
NAME NE	Table 58								1		1				+	+	1	T
NAME NE	Stability Class 5B										1			1		+		
NAME NE	Class Frequency = 1.02%														1	1	+	Ţ
NAME NE	Upper Data Collection Station (297 ft)												1					T
N											11100	100	Tarional .	1,41	VAVALVAV	AUA/	NINIM	100
1 1.25 33.75 562.5 78.75 101.25 123.75 146.25 14	Wind From This Direction ->				ENE	ш	ESE	SE	SSE	2	MOO	MO	MSM	* 5	***	1	9	\$ 1
6 11.25 33.75 56.25 78.75 101.25 123.75 146.25 188.75 114.25 213.75 238.25 238.75 238.25	- xapul			3	4		9	,	80	6	2	=	71 000	2 2 0 2 0	100	22.000	01 000	-
33.76 66.25 78.75 101.25 123.75 146.26 18875 191.25 213.75 238.25 239.25 239.25 239.25 239.25	Direction (Deg) GE ->	ľ		33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	23625	238.73	C2.102	303.73	350.50	200
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	and LT ->			56.25	78.75	N.	123.75	146.25	168.75	191.25	213.75	236.25	258.75	8	303.73	250.50	0,0	8
0.00 0.00 <th< th=""><th></th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>5</th><th>0</th><th>5</th><th>5</th><th>2 6</th><th>98</th><th>5</th><th>2</th></th<>		0	0	0	0	0	0	0	0	0	5	0	5	5	2 6	98	5	2
0.00 0.00 <th< th=""><th>3711% of all valid observations for this stability class</th><th>0.00</th><th></th><th>0.0</th><th>000</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.0</th><th>000</th><th>8</th><th>8</th><th>8</th><th>8</th><th>0.00</th><th>000</th><th>38</th><th>38</th></th<>	3711% of all valid observations for this stability class	0.00		0.0	000	0.00	0.00	0.00	0.0	000	8	8	8	8	0.00	000	38	38
0.00 0.00 <th< td=""><th></th><td>0.00</td><td></td><td>000</td><td>0.0</td><td>000</td><td>8.0</td><td>0.00</td><td>8</td><td>8</td><td>8</td><td>8</td><td>8</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td></th<>		0.00		000	0.0	000	8.0	0.00	8	8	8	8	8	3	3	3	3	3
0 0												ľ	,	(-	-	,	T
0.00 0.00 0.00 0.00 0.14 0.00 0.27 0.00 1.14 0.00 0.27 0.00 1.14 0.00 <th< th=""><th></th><th>0</th><th></th><th></th><th>٥</th><th>٥</th><th>=</th><th>0</th><th>2</th><th>0</th><th>-</th><th>0</th><th>5</th><th>9</th><th>9 8</th><th>2</th><th>3 8</th><th>A ER</th></th<>		0			٥	٥	=	0	2	0	-	0	5	9	9 8	2	3 8	A ER
0.00 0.00 <th< th=""><th>375 % of all valid observations for this stability class</th><th>00.0</th><th></th><th></th><th>0.00</th><th>0.00</th><th>1.14</th><th>8</th><th>2.27</th><th>8</th><th>1.14</th><th>000</th><th>3</th><th>3 8</th><th>3 8</th><th>3 8</th><th>3 8</th><th>3 5</th></th<>	375 % of all valid observations for this stability class	00.0			0.00	0.00	1.14	8	2.27	8	1.14	000	3	3 8	3 8	3 8	3 8	3 5
0.00 0.00 <td< th=""><th></th><th>0.00</th><th></th><th></th><th>800</th><th>0.0</th><th>0.01</th><th>0.00</th><th>8</th><th>8</th><th>90</th><th>8</th><th>8</th><th>8</th><th>800</th><th>3</th><th>3</th><th>3</th></td<>		0.00			800	0.0	0.01	0.00	8	8	90	8	8	8	800	3	3	3
0.00 0.00 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td>-</td><td>1</td><td></td><td>c</td><td>4</td><td>1</td></th<>											1	-	-	1		c	4	1
0.00 0.00 0.00 0.00 0.227 0.00 0.227 0.00 0.227 0.00		2			0	٥	0	2	0	2	٥	2 0	2	9	280	3 60	9 6	16.01
0.00 0.00 <th< td=""><th>379 % of all valid observations for this stability class</th><td>2.27</td><td></td><td></td><td>0.0</td><td>8</td><td>0.0</td><td>2.27</td><td>0.00</td><td>2.27</td><td>8</td><td>3</td><td>3</td><td>3</td><td>3</td><td>6.61</td><td>3 5</td><td>0.0</td></th<>	379 % of all valid observations for this stability class	2.27			0.0	8	0.0	2.27	0.00	2.27	8	3	3	3	3	6.61	3 5	0.0
0.00 0.00		0.08			8	0.00	0.00	0.02	0.00	8	8	8	8	8	000	0.02	0.07	0.16
0								-			-				·	,	;	č
0.00 0.00 <th< th=""><th></th><th>3</th><th>ō</th><th>0</th><th>0</th><th>ō</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>Б</th><th>2</th><th>5</th><th>?</th><th>2 0</th><th>3</th></th<>		3	ō	0	0	ō	0	0	0	0	0	0	Б	2	5	?	2 0	3
0.00 0.00 <th< td=""><th>2831% of all valid observations for this stability class</th><td>3.41</td><td></td><td></td><td>000</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td><td>0.0</td><td>000</td><td>2.27</td><td>800</td><td>3.41</td><td>35.6</td><td>9.00</td></th<>	2831% of all valid observations for this stability class	3.41			000	0.0	0.00	0.00	0.00	0.00	0.0	0.0	000	2.27	800	3.41	35.6	9.00
0.00 0.00 0.00 0.00 0.00 4 0.00 0.		0.03			0.00	0.00	00.0	0.00	0.00	8	8	8	8	8	800	9.03	22	3
0.00																-	-	5
0.00 0.00 <th< th=""><th></th><th>5</th><th>o</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>4</th><th>•</th><th>0</th><th>=</th><th>N</th><th>-</th><th>7</th><th>7 .0</th><th>17</th></th<>		5	o	0	0	0	0	0	0	4	•	0	=	N	-	7	7 .0	17
0.00 0.00 <th< th=""><th>3971%, of all velid observations for this stability class</th><th>5.68</th><th>L</th><th></th><th>0.0</th><th>0.00</th><th>0.00</th><th>0.00</th><th>00.0</th><th>4.55</th><th>0.00</th><th>8</th><th></th><th>2.27</th><th>1.14</th><th>2.27</th><th>13.64</th><th>3</th></th<>	3971%, of all velid observations for this stability class	5.68	L		0.0	0.00	0.00	0.00	00.0	4.55	0.00	8		2.27	1.14	2.27	13.64	3
0 0		0.06			0.0	0.00	0.00	0.00	0.0	90.0	80	9.0	0.0	8	00	8	0.74	63
0.00 0.00 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ļ</th><th> </th><th></th><th>†</th><th>-</th><th>-</th><th>,</th><th>•</th><th>\$</th></td<>										ļ			†	-	-	,	•	\$
0.00 0.00 <th< th=""><th></th><th>•</th><th></th><th></th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>2</th><th>0</th><th>0</th><th>+</th><th>5 6</th><th>4 5</th><th>7 600</th><th>2 5</th><th>3 5</th></th<>		•			0	0	0	0	0	2	0	0	+	5 6	4 5	7 600	2 5	3 5
0.00 0.00 <th< td=""><th>391 % of all valid observations for this stability class</th><td>1.14</td><td></td><td></td><td>0.00</td><td>8</td><td>8</td><td>8</td><td>8</td><td>2.27</td><td>3</td><td>3</td><td>4</td><td>38</td><td>8 6</td><td>200</td><td>200</td><td>1</td></th<>	391 % of all valid observations for this stability class	1.14			0.00	8	8	8	8	2.27	3	3	4	38	8 6	200	200	1
0 0		0.01			8 0	0.00	8	0.00	8	8	8	8	5	3	8	3	3	3
0 0													,	((,	-	7
0.00 0.00 <th< td=""><th></th><td>٥</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>D</td><td>9</td><td>5</td><td>5</td><td>5</td><td>5</td><td>2</td><td>0</td></th<>		٥			0	0	0	0	0	0	D	9	5	5	5	5	2	0
0.00 0.114 2.27 2.27 9.09 1.14 0.00	305 % of all velid observations for this stability class	000			0.00	0.00	000	000	0.00	0.00	0.00	8	8	0.00	000	0.0	2.68	8
0.00 0.00 0.00 0.00 1.14 2.27 2.27 9.09 1.14 0.00		000			0.0	0:00	0.00	00.00	0.00	8	8	8	8	8	00.00	000	900	8
0.00 0.00 0.00 0.00 1.14 2.27 2.27 9.09 1.14 0.00																-	-	8
0.00 0.00 0.00 0.00 1.14 2.27 2.27 9.09 1.14 0.00		1	ō	o	0	0	+	2	2	8	-	0	2	4	c c	8	3 5	8 8
	2001% of all valid chearvations for this stability class	12.50			0.00	0.00	1.14	2.27	2.27	80.6	1.14	0.0	2.27	4.55	5.68	10.23	48.86	30.00
0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.09 0.01		0			000	000	0.01	0.02	800	90.0	0.0	900	0.00	0.05	90.0	0.10	0.50	1.02

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

					ļ	ľ	-	-	-	-	-	2	z	0	۵	o	œ
¥	8	٥	٥	4	1	9	-	-	,	+			-		-	-	
Table 5C		-					1						l				
Stability Class 5C	-										+			1	l		
Class Frequency = 2.31%									1		1	+	+		†		
Upper Date Collection Station (297 ft)										+			†			\dagger	Ī
							-	-	6	1100	CW.	WCW	3	WNW	WN	MNN	Total
Wind From This Direction ->	z	NNE	P	ENE	Ш	ESE	<u>, , , , , , , , , , , , , , , , , , , </u>	200	0	450	*	C.	: 5	77	15	16	17
<- xapul	-	2	3		9	9	,	0	5	2000	240 45	30.000	75 976	281 25	303.75	326.25	O
Direction (Deg.) GE →	348.75				78.75	101.25	123.75	146.25	168.75	19120	213.73	270070	200.00	37 606	308.05	248 75	98
VELOCITY (MPH) and LT ->	1128	33.75			101.25	123.75	146.25	168.75	191.25	213.75	236.23	290	07-107	0.00	2000	20	3
	0	0	0	0	0	0	0	0	9	5	5	3	2	2 8	9	2	2
or of all valid observations for this stability class	0000		L		00:0	00.0	0.00	0.00	8	0.0	8	8	8	800	38	38	38
% of all valid checkenedone for this period	000	000	000	0.00	000	00.0	00.0	0.00	0.00	0.00	8	8	000	9	3	3	3
A CH SHI VSHI COSSIVATION TO THIS POLICE										•	 	,	•	-	6	-	ľ
OT 0 05 004 E 9 50	٢	0	0	0	0	-	N	-	0	5	-	5	-	3	> 0	- 52.0	,
9/ of all collections for this stability class	8	000		0.00	000	0.50	1.00	0.50	8	°	8	0.00	0.50	800	300	200	8 5
% of all valid cheenwhore for this nearly	000	000	000		0.0	10:0	0.02	0.01	8	000	8	8.0	0.0	3	3	3	3
A CHI CHI ACTION CONTRACTOR CONTR													1	-	+	9	0.4
03.03.7.7.03.03.0	4	C	-	٥	-	o	0	C)	~	1	0	0	٥	6	?	2	3
G1 3.50 aro LE 7.50	00'6	0	2		050	000	000	8.	8:1	0.50	0.00	0.00	000	33	3	8.8	8
% of all valid coservations for this statutity class	3 6	88		000	0.01	8	8	0.00	0.02	0.01	0.0	8	8	8	89	0.21	9.43
% Of Bit Valid Code Validation of the London													-				
	4	0	•	C	C	2	4	5	9	F	0	2	4	9	3	12	3
GT 7.50 and LE 12.50	28	28	l	3	6	8	200	2.50	300	0.50	0.00	8:	5.00	3.00	1.50	8.50	8
% of all valid observations for this stability class	3,0	38	38			3 8	860	900	200	0.0	000	8	0.05	20.0	0.03	0.20	890
% of all valid observations for this period	0.12	9.0	۱		3	3	3										
	í				•		c	-	8	-	0	0	3	10	8	19	59
GT 12:50 and LE 18:50	D.	200	280	280	0	8	200	05.0	9	0.50	80	0.00	1.50	2.00	4.00	9.50	83.50 23.50
% of all valid observations for this stability class	3.5	38				38	8	100	000	0.01	000	8	0.03	0.12	60.0	0.22	0.68
% of all valid observations for this period	01.0	3	3			3											
	٩				O	0	0	0	-	-	0	-	2	7	6	13	28
G1 18:50 and LE 24:50	2		0	5	000	000	000	000	0.50	0.50	0.0	0.50	1.00	3.50	1.50	6.50	14.00
% of all valid observations for this stability class	38	3 8				80	000	8	0.0	0.0	0.00	0.01	8	88	8	0.15	8
% of all vaild observations for this period	3																
	•	9	9	c	0	o	٥	0	0	0	0	0	0	0	0	-	^
G1 24.50	2	0	6			000	000	000	8	00.0	0.00	0.0	0.0	0.00	0.0	3.50	3.50
% of all valid observations for this stability class	300	38		38	800	8	000	000	000	000	00.0	00:0	0.00	0.00	0.00	0.08	90.0
% of all valid observations for this period	3	١				3											
	80	1			Ť	6	Œ	ō	4	4	-	9	10	56	17	75	8
Ali Velocities	177		030	2	050	2	906	4 50	8.50	2.00	0.50	1.50	5.00	13.00	8.50	37.50	18 8
% of all valid observations for this stability class	3.50	3				3 8	200	0 10	000	50.0	100	003	0.12	0.30	0.20	0.87	2.31
% of all valid observations for this period	20	3	5	3		4.50	3	1									

Joint Frequency Distribution Table

E Table 5D Class 5D Class 5D = 53.25% n (297 ft)
A Table 5D Stability Class 5D Class Frequency = 53.25% Upper Data Collection Station (297 ft)
Uppe

Joint Frequency Distribution Table

				ľ		ŀ	١	-	-	-	¥	_	Σ	z	0	_	3	r
	V	2	,		J	-	,	+	+	1	-						ŀ	
481	Table 5E				1		+	1	1					ŀ				
482	Stability Class 5E								-	+	-		-		-			
483	Class Frequency = 30.51%										+		+	+			+	
	Upper Data Collection Station (297 ft)							-					+			+		ŀ
485										-		100	1410141	3	MANITAL	PAIN	MMM	Total
486	Wind From This Direction ->		NNE	N.	ENE	Ш	ESE	SE	SSE	S	NSS.	MO.	MOM	\$ 5	1	7	4	-
487	xapul		2	3	4	ĸ	9	7	8	5	2	=	2 2000	2 12 020	1 2000	2000	30 200	
100	Olrection (Dec) GE ->	348	11.25	33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	528.73	201.20	303.73	350.63	200
489 VPI OCITY (MPH			33.75		78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	258.75	Q -	63.73	340.40	0 0	3 2
ē			-	9	0	0	0	0	8	-	-	7	5	-	- 3	-	9	2 2 2
450 GE 0.00 BIS CE 0	490 GE COO and LE Coo	700		1.0	000	000	800	000	90'0	900	9.0	90.0	0.0	0.0	9.0	3	3	3
491 % of all velid obse	491 % Of Bit Valid Closervations for this nation	00	0		80	000	0.00	00:0	9.0	0.01	0.01	8	8	00	0.01	100	000	9
ADD WILL VENIO CUSE	March of the point											-		ľ	9	-	6	240
120 10 10 10 10 10 10 10 10 10 10 10 10 10	9	103	98	23	33	25	2	98	6	47	16	21	F	n	2	8	88	4
405 G O O S S S S S S S S S S S S S S S S S	400 of all colonostone for this stability class	391	L	C.	- 86	2.16	2.43	3.03	2.31	1.78	0.61	0.80	0.42	0.34	0.72	0.60	977	9 0
406 % of all valid obse	AGE 1% of all valid observations for this period	1.19	0.76		0.58	0.86	0.74	0.93	0.71	S	0.19	0.24	0.13	0.10	0.22	0.63	3	8
407													-	1	90	96	Š	300
409 GT 3 ED and 1 E 7 ED	, KO	153		12	6	12	36	108	158	8	9	2	>	170	8 5	85	3,7	36,76
400 let of oil velid ober	400 lot of all valid observations for this stability class	5.80		0	0,11	0.46	1.37	4.82	5.99	3.26	0.61	0.49	8	3	1.3/	15.	* 100	3
495 % of Bit Valid Octor	TOOLS, at all wild absorptions for this posited	177	000		0.03	0.14	0.42	1.23	1.83	0.1	0.19	0.15	0.20	0.24	0.42	0.42	8,7	200
SOC SEE VERY COSE	HARROLIS IOI RIIS POLICA								-				_					
501		8	6+		f	ŀ	4	24	48	89	23	6	9	38	78	₽	ន	8
502 GT 7.50 and LE 12.50	2.50				1 80	200	0.15	60	8	2.58	0.87	0.34	0.23	1.44	2.96	1.63	8.42	83 53
503 % of all valid obse	503 % of all valid observations for this stability class	800	9	38	38	3 6	200	0.28	850	67.0	0.27	0.10	0.07	44.0	0.90	09:0	2.57	7.72
504 % of all valid obse	504 % of all valid observations for this period	3	١		20.00	3	3	2				-						
505					•		•	6	6	10	8	4	3	16	37	24	88	237
506 GT 12.50 and LE 18.50	18.50	41			- 20	2	200	213) <u>-</u>	0.72	0.76	0.15	0.1	190	1.40	0.91	2.46	8.99
507 % of all valid obse	507 \% of all valid observations for this stability class	1.33		38	3 6	38	300	1800	200	0220	0.23	005	0.03	0.19	0.43	0.28	0.75	2.74
508 % of all valid obse	508 % of all valid observations for this period	0.47	3	1	3	3	200	3	3	,								
209				1	1	-	+	6	0	6	4	-	0	-	9	0	16	4
510 GT 18.50 and LE 24.50	24.50			1	5	3	70.0	200	800	0 11	0.15	200	000	9	0.23	00:00	19'0	1.52
511 % of all valid obse	511 % of all valid observations for this stability class	08.0	300		38		3 6	38	38	500	50.0	100	000	0.03	0.07	000	0.19	0.46
512 % of all valid obse	512 % of all valid observations for this period	8	1	3	3		5	3	3	3								
513		ľ			-	6	c	c	6	-	0	0	0	0	0	-	0	2
514 GT 24.50					2		2	000	000	000	000	000	000	00.00	00.0	90.0	0.00	80.0
515 % of all valid obsa	515 % of all valid observations for this stability class	00:0	800		3 8	38	3 8	38	88	100	8	000	0.00	000	800	100	00.0	80
516 % of all valid obsa	516 % of all valid observations for this period	5	ı	8	3		3	3	3	+	1	-			-			
517				1		-	185	676	64.6	305	8	5	37	98	111	130	292	2637
518 All Velocities		360					9	250	7/20	200	38	3 8	1 40	3.26	8.71	4.93	21.50	100,00
519 % of all valid obse	519 % of all valid observations for this stability class	14.98	3.98	2.58	2.12		3	9 9	10.51	3 3	380	8 9	200	2	S. C.	5	8.56	30.51
520 % of all valid obs	520 % of all valid observations for this period	4.57				0.81	1.63	2.40	3,13	3	0.92	3	3	3				

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

A Table 5F C D E F G H	в В	ш.	ш ш	п. О	O	H	┰	H +		-	×	-	Σ	z	0	<u> </u>	σ	œ
Stability Class SF Class Frequency = 10.72%			\top				\prod	$\frac{1}{1}$	+	H	H		+	\parallel				Π
Upper Data Collection Station (297 ft)						+	+	+	+	+	\dagger	T	+	+	+		\parallel	
Wind From This Direction -> N	NNE	NNE	¥	,	ENE	W	ESE	SE	SSE	S	SSW	МS	MSM	3	MNM	ž	NN.	Total
-			၉		4	5	9	7	8	6	0	=	12	13	4 5	15	900	7
348.75	11.25	11.25	33.75	, ,	58.25	78.75	101.25	123.75	148.25	168.75	191.25	213.75	236.25	258.75	22.50	303.73	37.020	28
11.25 33.75	33.75	33.75	56.25	ш	78.75	101.25	123.75	146.25	168.75	191.25	213.75	230.23	200	62.103	5,3	360.63	740.12	ğ
0	0	0	0	_1	-	В	0	0	9	2 8	-	2 00	2 5	2	9	-	-	0.43
y class 0.00 0.00	8	8	0.00	L	-1	8	0.00	88	8 8	38	5 6	3 8	38	38	38	000	000	9
	000	000	800	- 1	0.01	8	0.00	8	3	3	5	3	3	3	3	}		
	30	30	20	1	15	96	80	43	45	56	17	6	2	4	8	22	33	403
¥25	¥25	¥25	2.48	1	28	38	3.13	4.64	4.86	2.81	28.	0.97	0.54	1.51	0.86	2.38	3.56	43.52
0.54	0.45	0.45	0.27		0.17	0.32	0.34	0.50	0.52	0.30	0.20	0.10	8	0.16	0.09	0.25	0.38	4.66
										-	Ş	4	¢	5	\$	76	8	360
50 5	5		0		-	5	17	S	69	24	77	7 5	2 9	7 00 0	2 4	* 9 C	3 3	30 05
tions for this stability class 5.40 0.54	0.54		0.00		0.11	0.54	28	5.40	5.53	60.7	3	3	3	3	2 .	80.0	3 6	3 6
	90:0		80		0.01	90.0	0.20	0.58	0.57	0.28	0.14	0.14	0.15	2.7	2	070	0.93	4.2/
				1			+		-	1	•	9	-	-	71	-	35	4
10 0	0	0	٥	_1	ō	0	٥	2	4-	• ;	200	200	0.46	26.0	2 2	1 10	200	15.12
543 % of all valid observations for this stability class 1.08 0.00 0.00	0.00	0.00	8	_ 1	8	8,8	88	1.40	1.5	1.5	18.0	3 5	9 8	2 8	9 19	0.13	040	183
8	8	8	00:00		8	3	3	2	5	5	3	*	3					
0401	0	0		10	0	0	0	0	0	1	-	0	0	1	0	-	2	위
ne for this etablish class	000		00	la	8	000	0.00	800	0.00	0.11	0.11	0.00	0.00	0.11	0.00	9. E	0.54	8
548 % of all valid observations for this period 0.00 0.00 0.00	0.00		0.00	↤	0.0	0.00	0.00	8.0	0.00	0.01	0.01	8	8	9.0	8	0.01	800	0.12
				-1			-	,	,	•	•	•		•	6	6	ć	6
0	0	0		4	0	0	5 8	200	2	2	2	5	9	900	000	8	000	000
/ class 0.00 0.00	00.00	80	١	_1_	38	38	38	38	38	38	88	88	800	800	000	8	000	80
	8	3	1		3	3	3	3	3	3	3	3						
553	C	C	6		6	6	0	0	0	0	0	0	0	0	0	0	0	0
0.00 00 00 00 00 00 00 00 00 00 00 00 00	200	200		1	000	000	0.00	000	000	000	0.00	000	0.00	00.0	0.00	0.00	o. 80	8
0.00	000	00.0			0.00	80	8	0.00	0.00	8	8	000	0.00	0.0	0.0	8.0	8.	8
				Н										-	-	-	100,	900
4	4			g	17	33	46	106	\$	18	\$	12	ន	8	8	25	2 5	8
observations for this stability class 11.66 4.75	4.75			2.48	1.84	3.56	4.97	11.45	11.66	7.02	4.32	2.85	2.70	3.67	3.78	10.0	3	3 5
1.25 0.51	0.51		0.5	Ы	0.20	0.38	0.53	1.23	1.25	0.75	0.46	0.31	0.23	0.38	0.40	20.0	187	10.72

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

œ					Total	17	0	380	0	0.00	0.00		58	20.59	0.3	12	53.68	700	5	86	2	300		9	4.41	0.07	,	7	0.74	0.0	-	8	38	3	96+	2 2	3.0
σ			+		MNN	16	326.25	348.75	0	0.00	00.0		7	1.47	8	3	44.	100	3	5	2 2	3 5	-	 -	0.74	0.01		0	0.00	9	•	2	38	3	-	200	13.97
4					MV	15	303.75	326.25	0	0.00	000		-	0.74	0.01	1	200	100	3	6	,	200		0	0.00	0.0		0	000	8	-	2	38	3	-	0	2,00
0	_			1	WWW	14	281.25	303.75	0	0.0	0.00		0	1.47	8	·	147	2	, i	1	1	300		0	000	0.00		0	8.0	8	-		300	9.0	1	P .	5.88
z					3	13	258.75	281.25	0	0.00	8		2	1.47	8	1	7 47		Š	-	3,	/ * .0	1	-	0.74	0.01		0	000	8	-	,	3	8	1	1	5.15
×					WCW	6	236.25	258.75	0	8	0.00		0	8	8	t	* 70	100	3	Ī	- 1	4 50	3	-	0.74	0.01		0	0.00	8	1	3	3	0.00	ľ	9	4.41
- -					Mo	5	213.75	236.25		0.0	000		1	0.74	5	•	200	5000	3	f	2	7.7	3	o	0000	8		0	000	8	1	5	8	000		7	5.15
¥		_		1	CCIM	3	191.25	213.75		000	000		1	0.74	0.01	•	2 2	200	2	•	5	38	3	6	000	80		٥	0.8	8	6	5	8	000	1	9	7.35
-	_				U	,	168 75	101 25	2	000	8		2	1.47	8	ľ	, 2	0.10	9	,	5	88	3	6	221	000		-	0.74	0.01		5	8	8		13	9.56
-					100	300	146.25	168 75	3	000	8		-	0.74	0.01		4 8	10.69	91.0	1	-	4.74	2	6	000	000		0	0.00	8 8	,	5	8	8		16	11,76
Ξ					100	3,5	123.75	146.05	0	000	8		8	1.47	0.02	;	= 8	8	0.13	-	7	1.47	O.UK	6	200	000		0	0.00	80		5	8	8		15	1.89
9					1	200	101 25	102 75	60.70	000	000	-	2	3.68	90.0	1	7 .	1.4/	0.02		5	8 8	3	-	9	000		0	0.00	8	-	3	0.00	8		7	5.15
-					E		27.87	101.05	63.101	200	000		4	2.94	9.09	1	-	0.74	0.01	-	0	0.00	3	c	2	88		0	0.00	0.00	•	5	0.00	8 0		9	3.68
_		-				בועב	40 92	70.70	0/0/	980	800		0	0.00	0.0		9	3	8		٥	8	3	-	2	900		0	000	0.00		0	0.00	0.00		0	00:0
-			<u> </u>		1	Z C	50 76	20.73	8	2 6	8		2	1.47	80.0		0	000	000		0	8	3	-	2 8	38	3	0	0.00	0.0		o	0.0	0.00		2	1.47
0		1				MAG	7 2		6	2 6	88	+	F	0.74	0.01		3	2.21	8		2	1.47	0.62	•	2	3 8		0	0.00	0.00		0	0.00	0.00		9	4.41
8						Z	1000	20.70	11.63	5	3 8		8	1.47	0.00 0		2	3.68	90.0		0	8	800	•	2 6	38	3	0	0.00	0.00		0	0.00	0.00		7	5.15
A	Table 5G	Stability Class 5G	Class Frequency = 1.57%	Upper Data Collection Station (297 ft)		Wind From Inis Direction ->	<- xepul	Oreceon (U	VELOCITY (MPH) and L1 ->	570 GE 0.00 and LE 0.95	all valid observations for this paried	523	574/GT 0 95 and 1 F 3.50	5751% of all valid observations for this stability class	576 % of all valid observations for this period		578 GT 3.50 and LE 7.50	579 % of all valid observations for this stability class	all valid observations for this period	581	7.50 and LE 12.50	583 % of all valid observations for this stability class	584 1% of all valid observations for this period		586(G1 12:50 and LE 18:50	587 % Of Bit Valid COSSTVATIONS (Of this Statement Costs)	589	590/GT 18:50 and LE 24:50	591 % of all valid observations for this stability class	all valid observations for this period	593	594 GT 24.50	595 % of all valid observations for this stability class	all valid observations for this period	597	598 All Velocities	5991% of all valid observations for this stability class

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

Season SALL	41 1 1 1 1 1 1 1 1 1	8 8 9 168.76 191.25 191.25 100.01 0.01 105 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.2	85SW 100 213.78 2 2 2 2 2 2 2 0.02 0.02 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05	SW S	WSW 12 236.25 288.75 288.76 0.00 0.00 0.00	258.75 281.25 281.25 281.25 3.00 0.00 0.50	WNW NWW 14 15 15 281 25 303.75 326.25 303.75 326.25 303.75 326.25 303.75 326.25 303.75 326.25 303.75	NW NWW NWW NWW NWW NWW NWW NWW NWW NWW	1048 107 108 108 10.21 1799 20.82 20.82
Marthur Mart	91	168.75 191.25 191.25 191.25 1.61 1.21 1.21 1.21 1.21 1.21 1.21 1.21	SSW 19125 119125 11375 2 2 2 2 2 2 2 2 2 0 0.02 60 60 60 60 60 60 60 60 60 60 60 60 60						1704a 1707a
777) NONE	91	5 16875 191.25 191.25 10001 0.01 105 1.21 1.21 1.21 1.21 2.83 2.83	850 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	1 1 1 1 1 1 1 1 1 1			170 1799 20.82 20.82 20.82 20.82
Note	141	168.75 191.25 191.25 191.25 10.01 10.01 1.21 1.21 1.21 1.21 1.21 1.	SSW 10 10 10 br>10 10 10 10 10 10 10 10 10 10 10 1					111111111111	10tal 17 0 0 18 0.21 0.21 0.21 0.21 20.82 20.82
No.	41 99	9 168.75 191.26 191.26 10.01 0.01 1.21 1.21 1.21 2.83 2.83	SSW 191 25 213.75 20.02 0.02 0.02 0.064 0.64 0.69				1		1799 20.21 1799 20.82 20.82 20.82
NAME NE ENE ESE SE SE SE SE	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 9 9 168.76 191.25 191.25 191.25 191.25 191.25 246 2.89 2.89	\$\$W 10 10 10 10 2 2 2 3.13.75 0.02 0.02 0.02 0.03 0.04 0.04 0.064 0.064 0.064						17 17 18 18 18 10 11 0.21 0.21 17 20.82 20.82
No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	168.76 191.25 191.25 191.25 100 100 102 121 121 121 121 121 121 121	213.75 213.75 213.75 0.02 0.02 0.04 0.64 0.64 0.64 0.64					1 1 1 1 1 1 1 1	179 360 360 18 0.21 0.21 0.21 20.82 20.82
National Color Nati	91	168.75 191.25 191.25 10.01 0.01 10.0 10.0 1.21 1.21 1.21 1.2	191.25 213.75 2.00 0.02 0.04 0.64 0.64 0.69						360 360 18 0.21 0.21 20.82 20.82 20.82
E.> 348.75 11.25 33.75 56.25 78.75 101.25 123.75 146.25 146.25 146.25 16.23 2.24 16.25	41 9	168.75 191.25 10.01 0.01 105 1.21 1.21 1.21 1.21 2.85 2.88 2.88	191.25 213.75 0.02 25.55 0.06 0.06 0.06 0.06 0.06 0.06 0.06						360 18 0.21 0.21 1799 20.82 20.82
1,126 33,75 56.26 76.75 101.25 123.75 146.25 166.75 101.2	9	191.25 0.01 0.01 1.05 1.21 1.21 1.21 1.21 2.45 2.83 2.88	213.75 0.002 0.002 0.64 0.69 0.69		11111		111111		0.21 0.21 0.21 1799 20.82 20.82
1 3 1 0 0 0 0 0 0 0 0 0		0.01 0.01 1.21 1.21 1.21 2.83 2.83	0.000 0	20.00 47 74.00 30.054	000000000000000000000000000000000000000	0.00			0.21 0.21 1799 20.82 20.82
O O O O O O O O O O		0.01 0.01 105 1.21 1.21 1.21 2.45 2.83 2.83	200 200 200 200 200 200 200 200 200 200	0.00 0.02 0.55 0.55 0.55 0.55 0.55	000 000	0.01 0.01 0.50 0.50			1799
100 0.00 0		0.01 105 1.21 1.21 1.21 2.45 2.83	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 47 47 0.54 39	0.00	0.50 0.50 0.50			1799 20.82 20.82
221 144 112 96 128 153 202 2.56 1.67 1.30 1.11 1.46 1.89 2.34 2.56 1.67 1.30 1.11 1.46 1.89 2.34 352 80 46 41 81 132 344 4,07 0.93 0.53 0.47 0.94 1.53 3.98 4,07 0.93 0.53 0.47 0.94 1.53 3.98 4,07 0.93 0.53 0.47 0.94 1.53 3.98 4,07 0.93 0.53 0.47 0.94 1.53 3.98 3,62 0.64 0.12 0.16 0.28 0.65 1.65 3,62 0.64 0.12 0.16 0.28 0.65 1.65 3,62 0.64 0.12 0.16 0.28 0.65 1.65 2,72 0.20 0.03 0.02 0.06 0.09 0.19 <td></td> <td>105 1.21 1.21 2.45 2.83</td> <td>25.00 26.00</td> <td>0.54</td> <td>0.29</td> <td>0.50</td> <td></td> <td></td> <td>20.82</td>		105 1.21 1.21 2.45 2.83	25.00 26.00	0.54	0.29	0.50			20.82
221 144 112 36 126 163 234 256 1.67 1.30 1.11 1.46 1.89 2.34 256 1.67 1.30 1.11 1.46 1.89 2.34 4.07 0.83 0.53 0.47 0.94 1.53 3.96 4.07 0.93 0.53 0.47 0.94 1.53 3.96 4.07 0.93 0.53 0.47 0.94 1.53 3.96 3.62 0.64 0.12 0.16 0.28 0.65 1.65 3.62 0.64 0.12 0.16 0.28 0.65 1.65 3.62 0.64 0.12 0.16 0.28 0.65 1.65 2.72 0.20 0.03 0.02 0.06 0.06 0.19 2.72 0.20 0.03 0.02 0.06 0.06 0.19 2.72 0.20 0.03 0.02 0.06 0.09 <t< th=""><td></td><td>245 246 2.88</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>39 554</td><td>62.0</td><td>0.50</td><td></td><td></td><td>20.82</td></t<>		245 246 2.88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	39 554	62.0	0.50			20.82
2.56 167 1.30 1.11 1.46 1.89 2.34 2.56 1.67 1.30 1.11 1.46 1.89 2.34 352 80 46 47 0.94 1.53 3.98 4.07 0.93 0.53 0.47 0.94 1.53 3.98 313 56 10 14 24 56 143 3.62 0.64 0.12 0.16 0.28 0.65 1.65 3.62 0.64 0.12 0.16 0.28 0.65 1.65 2.72 0.74 0.04 0.28 0.65 1.65 2.72 0.74 0.04 0.02 0.06 0.09 2.72 0.20 0.03 0.02 0.06 0.09 2.72 0.20 0.03 0.02 0.06 0.09 89 1 0.0 0.0 0.0 0.0 0.0 103 0.0 0.0 0.		245	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 S	00.00	0.50			20.82
2.56 167 1.30 1.11 1.46 1.89 2.34 352 80 46 41 81 132 344 4,07 0.83 0.53 0.47 0.94 1.53 3.98 4,07 0.89 0.53 0.47 0.94 1.53 3.98 313 56 10 14 24 56 143 3,62 0.64 0.12 0.16 0.28 0.65 1.65 3,62 0.64 0.12 0.16 0.28 0.65 1.65 2,72 0.20 0.03 0.02 0.06 0.06 0.19 2,72 0.20 0.03 0.02 0.06 0.09 0.19 89 1 0 0 0 0 0 0 103 0.01 0 0 0 0 0 0		245	3 3 3	8 8		3			2603
352 80 46 41 81 132 344 4,07 0.83 0.53 0.47 0.94 1.53 3.98 4,07 0.83 0.53 0.47 0.94 1.53 3.98 313 56 10 10 24 55 143 3,62 0.64 0.12 0.16 0.28 0.65 1.65 3,62 0.64 0.12 0.16 0.28 0.65 1.65 2,72 0.64 0.12 0.16 0.28 0.06 0.09 2,72 0.20 0.03 0.02 0.06 0.09 0.19 2,72 0.20 0.03 0.02 0.06 0.09 0.19 89 1 0 0 0 0 0 0 103 0.01 0.00 0.00 0.00 0 0 0		245	09.0	88	0.63	_			2603
407 039 0.53 0.47 0.94 1.53 0.94 1.53 0.94 1.53 0.94 1.53 0.94 1.53 0.94 1.53 0.94 1.53 0.94 1.53 0.94 1.53 0.96 1.53 0.96 1.53 0.96 0.13 0.15 0.		2.83	380	3	44	53	84		2000
4,07 0.83 0.53 0.47 0.94 1.53 3.56 313 56 0.63 0.47 0.94 1.53 3.58 362 0.64 0.12 0.16 0.28 0.65 1.43 272 0.29 0.03 0.02 0.06 0.09 0.09 0.19 277 0.20 0.03 0.02 0.05 0.06 0.19 89 1 0.0 0.00		2.83	0.69	0.45	0.51	061			30.00
4.07 0.53 0.47 0.54 1.53 3.58		7.83	3	2 4 5	100	100	700	A 11	30.00
y class 313 56 10 14 24 56 143 y class 3.62 0.64 0.12 0.16 0.28 0.65 1.65 y class 3.62 0.64 0.12 0.16 0.28 0.65 1.65 y class 2.72 0.20 0.03 0.02 0.06 0.09 0.19 y class 2.72 0.20 0.03 0.02 0.05 0.09 0.19 y class 1.63 0.1 0.00 0.00 0.2 0.00 0.19 y class 1.63 0.11 0.00 0.00 0.00 0.00 0.19 y class 1.63 0.11 0.00 0.00 0.00 0.00 0.00 y class 1.63 0.11 0.00 0.00 0.00 0.00				2	5	5			
The for this stability class 1313		210	Ya	ag	46	130	228	31 540	2311
This stability class 3.62 0.64 0.12 0.16 0.25 0.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1		200	560	670	0.53	28			26.74
ras for this period 3.62 0.64 0.12 0.16 0.22 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	20.00	8 6	700	040	53.0	1.26	264	52 6.25	26.74
res for this stability class 2.72 0.20 0.03 0.02 0.05 0.09 0.19 res for this period 2.72 0.20 0.03 0.02 0.05 0.09 0.19 res for this period 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		3	3	-	3			L	
re for this stability class 272 0.20 0.03 0.02 0.06 0.19 re for this period 2.77 0.20 0.00 0.02 0.05 0.06 0.19 re for this stability class 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.		00+	44	-	g	FB		122 395	1350
ns for this stability class 2.72 0.20 0.03 0.02 0.05 0.09 0.19 ns for this panick 2.72 0.20 0.03 0.02 0.05 0.09 0.19 ns for this stability class 1.03 0.01 0.00 0.00 0.00 0.00 ns for this stability class 1.03 0.01 0.00 0.00 0.00 0.00	1		2 0	213	25.0	100	273		15.62
2.72 0.20 0.03 0.02 0.05 0.06 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.00		3 2	200	25.0	760			15.62
89 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8	4.36	2	15.5	1			
88 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,	36	a	-	4	20	8	179	467
0.00 0.00 0.00 0.00 0.00	200	350	900	100	900	0 23			5.40
		200	38	100	900	0.23		0.51 2.07	5.40
0.00 0.00 0.00		2	3	2	335			L	
	0	1	c	0	0	2	9	15 66	20
200	5	900	000	800	000	20.00		0.17 0.76	
V Class 0.13 0.00 0.00 0.00 0.00		300	200	800	80	000		0.17	
0.00 0.00 0.00 0.00		3	3						
100	- TTU	830	25.4	136	149	309	687	491 1859	8642
1222 238 1/4 154 533 300 3251	ľ	3 6	190	22	1 22	3.58		[100.00
14 3.45 2.01 1.78 2.72 4.17 8.19	1	100	500	101	2 5	9	7 05	5 68 21 51	100 00
14.14 3.45 2.01 1.78 2.72 4.17 8.16	8.16 8.91	9.71	2.X	1.5/	7:72	3.30			3

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

Joint Frequency Distribution Table

Second S	
SSE SSW WSW WWW WWW <th></th>	
146.25 148.75 191.25 213.75 236.25 258.75 258.15 303.75 326.25 348.75 168.75 191.25 213.75 236.25 236.75 236.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 348.75 326.25 3	ES
188.75 191.25 213.75 236.25 236.75 2361.25 303.775 326.25 346.75 346.75 366.75	4 5 6
Columbia C	33.75 56.25 78.70 101.65 123.75
0.00 0.00 <th< td=""><td>0 0 0</td></th<>	0 0 0
0.00 0.00 <th< td=""><td>200</td></th<>	200
0 0	00.0 00.0
10	
0.00 0.00 <th< td=""><td>0 0</td></th<>	0 0
10	
6 620 5.30 0.66 0.66 0.60 0.26 4.64 3.97 6.62 0.12 0.03 0.04 0.05 0.06 0.00 0.05 0.06 0.07 0.12 1 0.06 0.01 0.00 0.05 0.06 0.07 0.02 0.07 0.05 0.00 0.00 0.00 0.00 0.07 0.02 0.07 0.05 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00
6.12 5.30 0.66 0.66 0.00 2.83 4.64 3.97 6.62 0.12 0.09 0.01 0.01 0.00 0.05 0.06 0.07 0.12 0.66 0.01 0.01 0.00 0.05 0.06 0.07 0.12 0.01 0.02 0.07 0.00 0.00 0.03 0.07 0.02 0.02 0.01 0.02 0.07 0.00 0.00 0.00 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.00	
0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.01 1 6 0.04 0.00 0.06 0.00 0.00 0.03 0.07 0.03 0.07 0.03 0.01 0.02 0.00 <td>0</td>	0
0.12 0.08 0.01 0.01 0.00 <th< td=""><td>0.00</td></th<>	0.00
0.66 6.53 0.66 0.00 0.00 1.39 3.97 1.99 6.62 0.01 0.02 0.01 0.00 0.00 0.00 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.00 0.	0.01 0.00 0.03 0.03
0.66 5.30 0.66 0.00 0.00 1.98 3.87 1.99 6.62 0.01 0.01 0.00 0.00 0.03 0.07 0.03 0.07 0.02 0.12 0.00 2.4 0.0 0.00 0.00 0.06 0.06 0.06 0.07 0.06 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-
0.01 0.02 0.01 0.03 0.03 0.03 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.00 <th< td=""><td>900</td></th<>	900
0.00 2.65 0.00 <th< td=""><td>000 000</td></th<>	000 000
0.00 2.66 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.00 <th< td=""><td></td></th<>	
0,000 2,66 0,000	0 0
0,00 0,06 0,00 <th< td=""><td>000</td></th<>	000
0 0	00.0 00.0
0.00 0.00 <th< td=""><td></td></th<>	
0.00 0.00 <th< td=""><td>0 0</td></th<>	0 0
0.00 0.00 <th< td=""><td></td></th<>	
0 0	300
0.00 0.00 <th< td=""><td>0</td></th<>	0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 000
0.00 0.00	80.0
11 20 2 1 1 8 18 11 22 7.28 13.25 1.32 0.66 0.66 6.30 11,92 7.28 14.57 0.13 0.23 0.02 0.01 0.01 0.09 0.21 0.13 0.25	00.0 0.00 0.00
7.28 13.25 13.2 0.86 0.86 5.30 11.32 7.28 14.57 0.51 0.13 0.25 0.01 0.01 0.09 0.21 0.13 0.25	
7.28 13.25 1.32 0.66 0.66 5.30 11.92 7.26 14.57 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	1 4
0.13 0.23 0.02 0.01 0.01 0.09 0.21 0.13	0.66 2.65

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

Stability Class 6C Stability Class 6C Collection Station (35 ft) or this stability class 6C for this period 6	+	Ψ	-	0	0	3	_	U	I I	-	_ ح	¥	1	Σ	z	0	۱	0	œ
The color The	1														1	+	+		ĺ
1. N NNHE NE	8	Stability Class 6C				_						+			1			+	
1	8	Class Frequency = 4.67%													1	-		1	
1.5 1.2	2	Lower Data Collection Station (35 ft)							1		+	+						1	
1. 1. 1. 2	85						-		-	100	-	7000	MIS	WCW	14/	WINW	32	WNN	Total
Columbia C	98	Wind From This Direction ->	Z		¥	ENE	ш		3	200	0	MOO	4	424	Ç	*		3	12
This control This	87	<- xepul	1		3	4	5	9	/	80	6	0	=	71	2 000	20,00	2 200	0 000	
Color Colo	88	Direction (Deg) GE ->	348.75		33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	258.75	281.23	303.73	350.50	2 0
Color Colo	L		11.25		56.25	78.75	101.25	123.75	146.25		191.25	213.75	236.25	258.75	281.25	33.73	3,035	348.73	8
1,1,24 1,24	8	0.00 and LE 0.95	0	0	0	0	0	0	0	0	0	0	0	D	3	2	3	0	5 6
10 10 10 10 10 10 10 10	%	of all valid observations for this stability class	0.00		90.0	0.00	0.00	0.00	0.00	800	8	8	8	000	000	8 8	8 6	8 8	38
7 4 5 3 2 1 6 3 2 0 0 0 1 0	%	of all valid observations for this period	0.00		0.00	0.00	8.	0.00	0.0	80	8.	8	8	80	8	8	8	3	3
17 10 10 12 10 12 10 12 10 12 12	93												,			(-	18
1,73 0,599 1,24 0,00 0,000	2	70.95 and LE 3.50	7		5	9	2	-	2	9	9	2	0	0	100	0 8	9	D (?
Color Colo	95 %	of all valid observations for this stability class	1.73		1.24	0.74	0.50	0.25	1.24	1.49	0.74	0.50	000	0.00	0.25	8.6	300	200	* 6
24 14 5 4 8 17 26 19 34 4 2 3 16 14 13 30 30 6.28 3.47 1.24 0.59 1.36 4.21 6.44 4.70 6.42 0.59 0.50 0.70 0.71 1.49 347 3.22 7.43 5 1.28 0.56 0.05 0.20 0.20 0.22 0.20 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03<	8	of all valid observations for this period	0.08		90.0	0.03	80.0	0.01	900	0.07	8	89	8	000	500	8	3)0:0	0.00
5.24 14 5.5 4 8 17 2.6 17 2.6 1.7 1.4 5.4 1.8 1.7 2.6 1.9 1.4 1.5 1.6 1.6 1.6 1.7 2.6 1.2 2.4 1.5 1.6 1.6 1.7 2.5 7.43 5 0.28 0.16 0.06 0.09 0.20 0.20 0.02 0.00 <	26											1		-	+	•	Ş	1	200
6.84 3.47 1.24 0.89 1.98 4.21 6.44 4.70 6.84 0.15 <th< th=""><th>98 G</th><th>73.50 and LE 7.50</th><th>24</th><th></th><th>2</th><th>4</th><th>80</th><th>17</th><th>56</th><th>19</th><th>3</th><th>4 60</th><th>7 0</th><th>2</th><th>,</th><th>2 0</th><th>2 8</th><th>3 5</th><th>3 8</th></th<>	98 G	73.50 and LE 7.50	24		2	4	80	17	56	19	3	4 60	7 0	2	,	2 0	2 8	3 5	3 8
13 15 17 17 18 18 18 19 19 19 19 19	8	of all valid observations for this stability class	5.94		1.24	0.99	1.98	4.21	6.44	4.70	8.42	0.99	000	4,0	64.	3.4/	3,56	24.7	03.50
13	100 %	of all valid observations for this period	0.28		90.0	90.0	800	0.20	6.3	22	0.39	90.09	8	89	0.07	91.0	0.13	8	8
19	5												-	-	-	50		ş	Ş
4.70 1.24 0.25 0.00 0.00 0.50 0.00 0.50 0.297 2.23 1.24 0.00 0.02 0.39 0.15 0.15 0.22 0.06 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1020	7.50 and LE 12.50	19		1	0	0	2	0	2	12	o	2	0	7 2	8	28	28	3 8
Columbia C	103	of all valid observations for this stability class	4.70		0.25	00.0	0.0	0.50	0.00	0.50	2.97	2.23	1.24	8	200	4	27.5	3	20.30
51 2 0 0 0 0 0 0 0 1 7 4 3 1.24 0.50 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.25 0.00 0.25 1.73 0.99 0.74 0.00 0.06 0.02 0.00 <th< th=""><th>101</th><th>of all valid observations for this period</th><th>0.22</th><th></th><th>0.01</th><th>0.0</th><th>0.00</th><th>0.02</th><th>9.0</th><th>80.0</th><th>0.14</th><th>0.10</th><th>90.0</th><th>0.00</th><th>9</th><th>0.30</th><th>0.15</th><th>2</th><th>9</th></th<>	101	of all valid observations for this period	0.22		0.01	0.0	0.00	0.02	9.0	80.0	0.14	0.10	90.0	0.00	9	0.30	0.15	2	9
1.24 0.59 0.00	105						Ц.				-			-	-	-			8
124 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.074 0.00 0.25 0.00 0.02 0.174 0.00	100	1250 and 1E 1850	5		0	0	0	0	0	0	9	0	-	0	-	,	4	2	Ş
10.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00	107%	of all valid observations for this stability class	1.24		8	0.00	0.00	00.00	0.00	80	0.74	8	0.25	0.0	0.25	1.73	800	0.74	4 6
1	881	of all valid observations for this period	0.06		8	0.0	000	8	8	8	8	8	0.01	8	0.01	80.0	3	3	3
10 10 10 10 10 10 10 10	82											,	-	-	-		c	6	ľ
1,000 0,00	1100	T 18.50 and LE 24.50	0		0	٥	0	0	0	0	0	0	2 6	5 8	9	30.0	2	2 5	36.0
0.00 0.00	111%	of all valid observations for this stability class	0.00		8	0.0	0.00	8	000	0.00	300	300	38	38	38	0.00	38	3 8	3 2
0 0	112%	of all valid observations for this period	0.00		0.00	000	0.00	000	800	0.00	3	3	3	3	3	5	3	3	3
0.00 0.00 <th< th=""><th>13</th><th></th><th></th><th></th><th>ľ</th><th>1</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>c</th><th>6</th><th>0</th><th>0</th><th>0</th><th>P</th></th<>	13				ľ	1	-	-	-	-	-	-	-	c	6	0	0	0	P
0,000 0,000 <th< th=""><th>114G</th><th>F 24.50</th><th>٥</th><th></th><th>2</th><th>5</th><th>5</th><th>5 8</th><th>2</th><th>2</th><th>2</th><th>200</th><th>200</th><th>000</th><th>000</th><th>000</th><th>900</th><th>000</th><th>000</th></th<>	114G	F 24.50	٥		2	5	5	5 8	2	2	2	200	200	000	000	000	900	000	000
0.00 0.00 <th< th=""><th>115%</th><th>of all valid observations for this stability class</th><th>0.00</th><th></th><th>8.0</th><th>8</th><th>3.5</th><th>33</th><th>3 8</th><th>3 8</th><th>38</th><th>3 8</th><th>3 8</th><th>38</th><th>88</th><th>88</th><th>000</th><th>900</th><th>8</th></th<>	115%	of all valid observations for this stability class	0.00		8.0	8	3.5	33	3 8	3 8	38	3 8	3 8	38	88	88	000	900	8
55 25 11 7 10 20 31 27 52 15 8 3 10 48 30 52 13.61 6.19 2.72 1.73 2.48 4.95 7.67 6.68 12.87 3.71 1.39 0.74 2.46 11.89 7.43 12.87 10 0.64 0.29 0.12 0.23 0.36 0.31 0.60 0.17 0.09 0.07 0.09 0.07 0.00	116%	of all valid observations for this period	80		8	8	8	00.00	3.0	3	3	3	3	3	3	3	3	3	3
1366 259 11 77 1.050 2.48 4.95 7.67 6.68 12.87 1.38 0.74 2.48 11.88 7.43 12.87 10 10 10 10 10 10 10 1	117								-		3	-		c	9.	av.	Ş	2	454
13.61 6.19 2.72 1.73 2.46 4.35 7.67 6.89 12.07 0.09 0.12 0.26 0.35 0.30 0.64 0.29 0.13 0.08 0.12 0.23 0.35 0.80	118 A	Velocities	8		-	/	10	8	50	/200	3 5	2 7	0 00	27.0	2 48	11 88	7.43	12 87	13.0
0.64 0.29 0.13 0.08 0.12 0.23 0.35 0.31 0.60 0.17 0.08 0.12 0.30 0.30 0.30	119%	of all valid observations for this stability class	13.61		2.72	1.73	2.48	4.95	7.67	90.00	12.8/	2,5	8 8	100	0	99.0	2000	090	3 6
	120%	of all valid observations for this period	0.64		0.13	900	0.12	0.23	0.36	0.31	0.60	0.17	0.09	ign:n	0.12	6:30	V.32	78.5	5

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

ч					,	eg !	=	٥	8	4	9	99	7000	655	200	14.53	7.46.6	200	42.66	83		88	21.75	10.36	,	191	4	2.21	1	12	8	0.14		-	8	9		41.4	8	47.60
0		-		1		AV.	9	326.25	348.75	-	8	000	-	ž į	3.33	6.	040	200	8.51	59	_	182	4.42	2.11		21	0.51	0.24		0	8	8	-	ō	000	8		718	17.45	8.31
۵			-		-	ž	15	303.75	326.25	0	8	8		38	2.14	8	10,	/2	3.08	1.47		105	2.55	175		42	53	0.43		8	6.5	8	-	-	20.0	00	-	37	89	4.29
0		-	-			MNM	ĺ	281.25		0	8	8	-	3	4	9		3	28	96.0		152	3.69	1.76		26	1.36	0.65	-	4	0.10	99		0	80	80	+	ဇ္တ	8.51	4.05
z				-		3	١	258.75		0	8	8	-	42	3	0.49	- 6	ğ	-38	0.95		25	1.26	0.60		1	0.27	0.13		0	0.00	8		ō	0.00	8	-	187	4.55	2.16
Σ		-				WSW	١	236.25		-	0. 8	0.01		8	0.73	0.35	-	3	0.73	0.35		ឧ	0.53	0.25	-	0	0.00	000		0	0.00	0 0 0	-	0	0.0	000		83	2.02	96.0
-						SW			236.25	0	8	8		84	1.17	0.56	-	/2	99.0	0.31		7	0.17	0.08	-	0	0.00	0.0	-	ō	0.00	8		0	0.0	000		28	÷.39	0.95
¥		. ,			-	SSW		191.25	213.75	0	0.00	8		8	1.53	0.73		3	1.22	0.58		53	0.70	0.34		თ	0.22	0.10		0	0.00	0.0		0	0.00	900		151	3.67	1.75
-						S	6	168.75	191.25	0	0.00	80		8	2.18	8.	-	175	4.25	2.05		102	2.48	1.18		18	0.44	0.21		0	0.00	000		0	00.00	0.00		384	9.33	4,44
-						SSE	8	146.25	168.75	-	0.02	0.01		5	2.46	1.17		138	3.35	1.60		2	0.17	90.0		ō	0.00	0.00		0	00'0	0.00		0	0.00	0.00		247	6.00	5.86
I						SE	7			0	0.00	0.00	-	2	1.92	160		8	202	96.0		0	0.0	8.0		0	000	000		0	00:0	0.00		0	0.00	0.00	_	162	3.94	1.87
5	-	_				ESE	9	101.25		-	0.02	0.01		96	2.33	1.11		154	3.74	1.78		12	0.29	0.14		-	80.0	0.01		0	00.0	0.00		0	0.00	0.00		597	6.42	3.05
1	-					Ε	3	78.75	ľ	0	00:0	0.00		75	28.	0.87		70	1.70	0.81		9	0.15	20.0		0	000	0.00		0	000	000		0	0.00	0.00	-	151	3.67	1.75
	-	_	_			ENE	4	56.25	78.75	0	800	8.0		74	1.80	0.86		41	1.00	0.47		2	90.0	80		0	000	0.00		0	000	0.0		0	0.00	0.00		117	2.84	1.35
	L		_			NE	8	33.75	56.25	0	0.00	0.00		19	1.48	0.71		5	1.02	0.49		-	0.02	0.01		0	000	0.00		0	000	000		0	80	0.00		2	2.53	1.20
0	-	L				NNE	2	11.25		0	0.0	0:00		82	1.51	0.72		2	1.70	0.81	_	43	1.06	0.50		9	0.15	0.07	L	0	000	0.00		o	8.0	000		181	4,40	2.09
						z	+			0	000	0.00		129	3.14	1.49		833	5.66	2.70		173	4.21	2.00		27	99.0	0.31		0	800	80		0	800	800	F	262	13.66	6.50
	L	3 6D	%08	35 ft)		^- 50	L					H								-		-		L	_			_	_						_	-		-		
	Table 6D	Stability Class 6D	Class Frequency = 47.60%	Lower Data Collection Station (35 ft)		Wind From This Direction ->	Jud	Direction (Dec) GE ->	and LT ->		ability class	riod			ability class	riod			ability class	je Por			ability class	rod			ability class	ž			ability class	100			ability class	Ē			ability class	rlod
*		S	Class Frequ	ta Collectio		find From		Directs			for this sta	for this pe			for this sta	for this pe			for this sta	for this pe			for this ste	for this pe			for this ste	for this pa			tor this ste	for this pa			for this ste	tor this pe			for this sta	of this pa
				Lower Da		Š			MPH)	E 0.95	servations	Servations		₹ 3.50	Servations	Servations		€ 7.50	Servations	bservations		E 12.50	servations	reervations		E 18.50	pservations	bservations		E 24.50	bservations	bservations			bservations	beervations			bservations	bservations
									VELOCITY (MPH	130 GE 0.00 and LE 0.95	131 % of all valid observations for this stability class	132 % of all valid observations for this period		134 GT 0.95 and LE 3.50	135 % of all valid observations for this stability class	136 % of all valid observations for this period		138 GT 3.50 and LE 7.50	1391% of all valid observations for this stability class	140 % of all valid observations for this period		142 GT 7 50 and LE 12.50	143 % of all valid observations for this stability class	144 % of all valid observations for this period		146 GT 12 50 and LE 18 50	147 % of all valid observations for this stability class	148 % of all valid observations for this period		150 GT 18 50 and LE 24.50	1511% of all valid observations for this stability class	152 % of all valid observations for this period		24.50	f all valid o	156 % of all valid observations for this period		158 All Velocities	1591% of all valid observations for this stability class	160 % of all valid observations for this period
-	121	122	123	124	125	126	127	128	L	130 GE	1311% 0	132 % 0	133	134 GT	135%0	136 % 0	137	138GT	139%0	140%0	141	142 GT	143 % 0	144%	145	146 GT	147%0	148 % 0	149	150GT	151%0	152%0	53	154 GT 24.50	155 % 0	156%0	157	158 All	159% 0	160%0

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

œ			7	Ţ		e o	1	0	98	2	0.51	0.1	1011	1497	5 3	3	C,	717	12.00	8.24	90+	9	200	. .	1	0	9 9	3	F	5	5 6		0	8	38	3	2357	2	3 8	21.21
o					10000	À Z	16	326.25	348.75	0	8	8	- 4	72.0	30	\$		040	9.13	3	!	-	0.72	220	ľ	5	3 8	3	6	200	38	3	-	80	3 8	3	305	365	1 2	3.33
۵					-	AN N	15	303.75	326.25	0	8	8	9	202	46.7	2.00	, ,	121	90.0	25	,	2	0.76	0.21	-	7	8 8	20.00	c	2	38	3	6	200	38	3	VCL	130	13.73	3/9
0					-	MNM	4	281.25	303.75	1	90	60	-	3	5.85	8	1	2	8	0.91		53	1.06	0.29	-	7	88	3	ŀ	- 20	3 6	3	c	2	38	3	SAG	3	10.44	2.85
z						≥	13	258.75	281.25	0	0.0	80		126	9.62	18		8	2.38	0.65		4	0.17	9.05		-	ğ	5	-	2	38	3		, 80	38	3	247		3.21	2.51
Σ						MSM	12	236.25	258.75	=	9 8	0.0		183	7.76	2.12		23	1.36	0.37		-	0.0	0.0	ļ	5	8	8	-	5	38	3	c	8	3 8	3	410	100	9.21	2.51
						SW	11	213.75	236.25	4	0.17	8		188	7.13	2 :	+	1	0.47	0.13		3	0.13	9.03 0.03		-	S	0.0	,	5 8	300	3	-	8	38	3	101	201	66.7	2.16
¥					-	SSW	10	191.25	213.75	-	0.04	0.01		125	2.30	1.45		8	1.36	0.37		18	0.76	0.21		•	8	8	•	5	300	3	•	2	8	3	74.40	0/1	7.47	200
ſ						S	6	168.75	191.25	=	0.04	0.01		91	3.86	-8		28	2.46	0.67		22	0.93	0.25		3	0.13	8		2	3	3	-	2	8	8	100	2	7.42	202
H						SSE	8	146.25	168.75	0	0.00	0.00		22	2.42	99.0		ş	1.70	0.46		4	0.17	0.05		0	0 9	8		0	000	8	-	2	8	8	1	101	4.23	1.17
H		-				SE	4	123.75	146.25	•	200	0.01		45	-	0.52		8	1.36	0.37		0	0.00	0.00		0	0.00	8		D	0.00	8	1	2	800	8	-	8/	3.31	8
9				-		ESE	9	101.25	123.75	0	8.0	8.0		35	1.36	0.37		23	0.98	0.27		2	90.0	0.0		0	0:00	8		0	8	8	1	5	0.0	8		2	2.42	990
ш						w	2	78.75	101.25	-	9	0.01		28	1.19	0.32		9	0.25	0.07		0	00:00	80		0	0.00	8		0	0.00	8		5	8	8		ક	1.48	0.40
3					_	ENE	4	56.25	78.75	ō	000	000		33	1.40	0.38		3	0.13	800		ō	00.0	8.0		0	0.00	8.		0	800	8	ľ	2	0.00	8		36	1.53	0.42
6						Ä	9	33.75	56.25	2	800	8		18	9.76	0.21		2	0.08	0.03		0	000	8.0		0	8	0.00		0	8	8	1	2	0.00	8		Ø	0.93	0.25
0					-	NA NA NA NA NA NA NA NA NA NA NA NA NA N	2	11.25	33.75	c	8	8		38	1.36	0.37		o	0.38	0.10		0	0.00	000		o	0.00	0.00		0	0.00	8		٦	0.00	8		41	1.74	0.47
8						z	-	348.75	11.25	c	0.00	80		76	3.22	0.88		52	2.21	89.0		12	0.51	0.14		0	0.0	0.00		0	0.00	8.		5	0.00	0.00		140	5.94	1.63
¥	Table 6E	Stability	Class Fro	Lower De		Mind From This Direction ->		e() noticetion (De	VELOCITY (MPH)	OE 0 00 00 01 E 0 06	171 % of all valid observations for this stability class	1721% of all valid observations for this period	£7.	174 GT 0.95 and LE 3.50	175 % of all valid observations for this stability class	176 % of all valid observations for this period	4	178GT 3 50 and LE 7.50	170 % of all valid observations for this stability class	1801% of all valid observations for this period	181	180 GT 7 50 and 1 F 12 50	183 % of all valid observations for this stability class	184 % of all valid observations for this period	88	186 GT 12 50 and LE 18 50	1871% of all valid observations for this stability class	188 % of all valid observations for this period	881	190 GT 18:50 and LE 24:50	191 % of all valid observations for this stability class	192 % of all valid observations for this period	93	194 GT 24.50	195 % of all valid observations for this stability class	196 % of all valid observations for this period	181	198 All Velocities	1991% of all valid observations for this stability class	200 % of all valid observations for this period

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

Statisticy Classer Federations Figure Section (1986) Figure Section (198	E	A	В	0		E	<u>.</u>	g	Ξ	-		×	_	₹	z	0	<u> </u>	0	-
Charlest C	201	Table 6F																1	
Comparison Com	8	Stability Class 6F			-						-	1	-			1			T
Vision Control Contr	203	Class Frequency = 11.91%	-		-								1						
Wind Control (L.E. S.) Wind Control (L.E. S.) SSW (MILE S.) SSW (MILE S.) SSW (MILE S.) Wind Control (L.E. S.) Wind Contr	Š	Lower Data Collection Station (35 ft)										-					1		
Wind From This Direction N Nie	88													-		1000000	100	140040	1
Maccommunication Transmission	8	Wind From This Direction ->	Ż	NNE	Ä	ENE	ш	ESE	35	SSE	S	SSW	MS	MSM	3	MNM	MA.	NNN	100
WELCOTITY (APP) Direction (Deplice) Sea 578 (1875) Sea 58 (1875) 10.12 (1875)	202	<- xepui	-	7	3	4	5	9	7	80	6	10	=	12	13	14	12	2 2	- 1
The Control of Contro	800	Sirection (Deg) GE →	348.75	11.25	33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	258.75	281.25	303.75	326.25	٥
1	L		11.25	33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	258.75	281.25	303.75	326.25	348.75	8
1	21015		-	-	2	1	0	0	0	0	0	0	0	0	-	0	2	0	*
1.1 1.1	211%	of all valid observations for this stability class		0.10	0.19	0.10	0.00	0.00	00.0	0.0	0.00	0.00	0.00	0.00	0.10	8	0.19	8	0.78
1.36 1.56 1.28 1.29 1.17 1.15	212%	of all valid observations for this period		0.0	0.02	0.01	0.00	00:0	0.0	0:00	0.0	8	8	0.0	9	8	89	8	0.08
14 16	213						_											-	
1.36	214	T 0.95 and LE 3.50	14	18	13	11	F	15	19	14	29	75	172	201	<u>당</u>	8	ន	31	85
0.16 0.19 0.16 0.19 0.16 0.19 0.16 0.19 0.16 0.19 0.16 0.19 0.16 0.19 0.16 0.19 0.16 0.19 0.19 0.11 0.22 0.41 10 11 0.29 1.11 0.29 0.49 0.29 0.29 0.10 0.11 0.10 0.1	215.0%	of all valid observations for this stability class	1.36	1.55	1.26	1.07	1,07	1.46	1.85	1.36	5,73	7.29	16.72	19.53	12.83	9.33	6.12	3.01	91.55
1	218	of all valid chaevations for this period	0.18	0.19	0.15	0.13	0.13	0.17	0.22	0.16	990	0.87	1.99	2.33	1.53	Ξ.	0.73	0.36	10.90
1	212				ľ			-	<u> </u>					_			_		
10 10 10 10 10 10 10 10	Caro	1350 and 5750	-	-	0	0	0	-	2	4	5	11	9	2	2	7	14	9	23
Color Colo	940	of all valid cheancefore for this stability class	0.10	0.10	000	000	000	0.10	0.19	0.39	0.97	1.07	0.58	0.49	0.49	99'0	1.36	0.58	7.89
Columbia	222	of all valid observations for this period	0.01	0.0	8	00.00	80	0.01	0.02	90.0	0.12	0.13	0.07	90.0	90:0	90'0	0.16	0.07	0.84
10	22						-	_					-						
10 10 10 10 10 10 10 10	200	T 7 50 and 1 E 12 50	5	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	9
10 10 10 10 10 10 10 10	8	of all valid observations for this stability class	0.49	0.00	800	000	80	0.10	00.0	0.00	0.0	0.0	00:00	0.00	0.00	8	800	0 8	0.58
0 0	200	of all valid observations for this period	0.06	00.0	00:0	000	8.0	0.01	80	00.0	000	00.0	00:00	0.00	0.00	0.00	0.0	0.00	0.02
10	225																		
0.00 0.00 <th< th=""><th>226 G</th><th>T 12.50 and LE 18.50</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>o</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>9</th></th<>	226 G	T 12.50 and LE 18.50	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	9
100 100	227%	of all valid observations for this stability class	0.00	0.00	0.0	0.00	0.00	0.00	00.00	0.00	0.00	900	8	8	800	8	8	8	8
0 0	228%	of all valid observations for this period	0.0	000	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.0	8	0.00	800	000	80.0	8	8
10	8																1	1	ĺ
GOOD GOOD <th< th=""><th>230</th><th>T 18.50 and LE 24.50</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>7</th></th<>	230	T 18.50 and LE 24.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
1000 0.000	231%	of all valid observations for this stability class	0.00	0.0	0.00	0.00	8	9 8	8	0.00	000	8	8	8	000	000	8	3	3
0 0	232	of all valid observations for this period	0.0	0.0	0.00	00:00	0.00	0.00	8	8	8	0.00	8	8	0.00	0.00	000	8	8
0 0	83														+		1	-	
0.00 0.00 <th< th=""><th>234</th><th>T 24.50</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>۰</th><th>0</th><th>0</th><th>0</th><th>0</th><th>٦</th></th<>	234	T 24.50	0	0	0	0	0	0	0	0	0	0	0	۰	0	0	0	0	٦
0.00 0.00 <th< th=""><th>235 %</th><th>of all valid observations for this stability class</th><th>00.0</th><th>0.0</th><th>0.00</th><th>0.00</th><th>00.00</th><th>0.00</th><th>0.00</th><th>800</th><th>8</th><th>8.0</th><th>8</th><th>8</th><th>8</th><th>000</th><th>8</th><th>8</th><th>8</th></th<>	235 %	of all valid observations for this stability class	00.0	0.0	0.00	0.00	00.00	0.00	0.00	800	8	8.0	8	8	8	000	8	8	8
21 18 15 12 11 17 21 18 69 86 178 206 138 103 79 37 2.04 1.75 1.46 1.77 1.07 1.65 2.04 1.75 6.71 8.36 17.30 20.02 13.41 10.01 7.88 3.60 10 0.24 0.21 0.21 0.21 0.21 0.21 0.20 1.00 2.06 2.38 1.60 1.19 0.91 0.43 1	236%	of all valid observations for this period	0.00	0.00	0.00	0.0	0.00	0.0	8	8	8	000	800	8	8	8	0.00	8	000
21 18 15 12 11 17 107 1.65 2.04 1.78 6.71 8.06 1.78 2.06 1.78 1.00 2.06 2.38 1.60 1.19 0.43 1.40 1.00	237									1							i	-	-
2.04 1.75 1.46 1.17 1.07 1.65 2.04 1.75 6.71 8.36 17.30 20.02 13.41 10.01 7.68 3.60 1.00 2.06 2.38 1.60 1.19 0.91 0.43	238 A	1 Velocities	2	18	15		11	17	21	18	89	88	178	8	88	8	g.	37	8
<u>0.24 0.21 0.17 0.17 0.14 0.13 0.20 0.24 0.21 0.80 1.00 2.06 2.38 1.60 1.19 0.91 0.43</u>	239 %	of all valid observations for this stability class	2.04	1.75	1.46		1.07	1.65	2.04	1.75	6.71	8.36	17.30	8	13.41	10.01	7.68	3.60	00.00
	240	of all valid observations for this period	0.24	0.21	0.17		0.13	0.20	0.24	0.21	0.80	÷.	5.06	2.38	1.60	1.19	0.91	0.43	11.91

Joint Frequency Distribution Table

Table 6G										l						_	
	_																
Stability Class 6G															+	+	
Class Frequency = 3.07%													1	+		\dagger	
Lower Data Collection Station (35 ft)											1		+				
						1		100		14100	0.14	MCM	3	WWW	MN	MNN	Total
Wind From This Direction ->		₹	N.	ENE		ŋ	י מ	300	0	ACC.	100	101	: :	1	1	4	
<- xepul			6	4			<u> </u>	8	200	20,00	24.0.00	20 200	250 75	201.05	303 75	208.05	
> Direction (Deg) GE			33.75	56.25	~			146.25	198.73	191.25	213.70	630.63	230.73	22.100	2000	240 75	200
VELOCITY (MPH) and LT ->	11.25	33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	208.73	201.20	303.73	360.63	0,0	5
250 GE 0.00 and LE 0.95	0	0	0	0	0	0	0	0	0	Б	-	-	9	5	2 8	1	ľ
251 % of all valid observations for this stability class	0.00	0.00	800	00.00		00:0	0.00	000	8	000	0.38	88.0	8	0.00	3.6	3 8	0.73
252 % of all valid observations for this period	80		0.00	000	00:00	0.00	8	8	8	8	0.0	0.01	8	8	3	3	3
				1	•		ľ	r	90	96	03	30	24	16	6	-	77
254 GT 0.95 and LE 3.50	13	4	-	-				,	8	07	20 01	20.00	300	200	7 92	264	9133
255 % of all valid observations for this stability class	4.91	1.51	0.38	0.38			3	8	10.07	200	0.0	3 6	300	9	100	800	1
256 % of all valid observations for this period	0.15	99.0	0.01	0.0	9	8		80.0	0.55	350	200	16.9	07:0	2	0.64	3	اَدُ
					Ĭ	Ī	•	-		c		6	0	-	7	-	2
258 GT 3.50 and LE 7.50	2			-				- 00	- 00 0	3 70	1	8	0 75	85.0	151	82.0	7.55
259 % of all valid observations for this stability class	0.75	0.00	00.0	3	3		3	8	8	250	5	3 8	2 8	3	200	100	C
260 % of all valid observations for this period	0.02			0.01		0.01	000	0.0	5.0	K S	8	3	O.UK	7	3	3	3
								1	1	(ŀ	-	-	C		-	
262 GT 7.50 and LE 12.50	0							0	٥	D	-	5 6	3	2 8	5 8	7 8	6
263 % of all valid observations for this stability class	00.0		0.00					8	8	000	860	0.00	0.00	38	38	3 8	3 6
2641% of all valid observations for this period	000			00.0	0.00	0.00	8	8	0.0	8	0.01	000	000	30	3	3	5
														(,	-	
266 GT 12.50 and LE 18.50	o	0	0		ō	0		0	0	o	0	0	0	5	5	5	
2671% of all valid chearvations for this stability class	000			000	0.00	L		0.00	0.00	0.0	0 8	80	000	8	000	00	9.6
2681% of all valid observations for this period	000	80	0.00			0.00	0.00	0.00	0.0	8	0.0	000	000	00.00	8	3	3
											1	-	+	-	+	-	
270 GT 18.50 and LE 24.50	0							0	5	0 0	5	5	5	2 6	2	2	00
271 % of all valid observations for this stability class	00.00	0.00	00.0	800				8	000	9	3	3	30.0	36	38	3 8	3 8
272 % of all valid observations for this period	0.00				0.00	0.0	8	800	8	8	0.00	800	3	3	3	3	ร์
										-	-	-	ľ	-	-	-	
	0	0	ō		o	0		õ	5	5	>	2		3	5	2	
275 % of all valid observations for this stability class	0.00	000	000	00.0				0.00	0.00	8	0.0	8	8	8	800	3	3
2761% of all valid observations for this period	000	000			00'0	0.00	0.0 0.0	0.00	8	0.0	0.00	8	8	0.00	8	3	š
														!	ı	•	100
278 All Velocities	15	*		2	2			8	82	8	8	3	8	2 9	Q S	0 8	7
2791% of all valid observations for this stability class	5.66	1,51	0.38			1.51	1.89	3.02	5 8	11.32	21.13	12.45	9.81	6.42	9.43	3,5	3 5
() () () () () () () () () ()																	

Joint Frequency Distribution Table

January 01, 2000 to December 31, 2000

A		-	0	9		-	5	-	-	-	¥	-	Σ	z	0	<u> </u>	0	E.
281	Tahla RAI I					Ī			-			-			-	-		
	Stability Clase 641		Ì	l		l		-				-		-	<u>. </u>	_		
Close E	100 00%		1	T		-						-			-	-	_	
Jewo	bation (35 ft)										H	-						
		T						-										
286 Wind From This Direction ->	Direction ->	z	NNE	SE	ENE	Ш	ESE	SE	SSE	S	SSW	SW	WSW	≥	WNW	}	NN N	Toga By
	- xepul	-	2	3	₹	2	9	7	8	6	10	=	12	13	4	15	19	2
	Direction (Deg) GE ->	348.75	11.25	33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	258.75	281.25	303.75	326.25	٥
VELOCITY (MPH)	and LT ->	11.25	33.75	56.25	78.75	101.25	123.75	146.25	168.75	191.25	213.75	236.25	258.75	281.25	303.75	326.25	348.75	8
290 GE 0.00 and LE 0.95		=	-	4	-	-	-	1	-	1	-	2	3	-	-	2	-	8
2911% of all valid observations for this stability class	ty class	0.01	0.01	90.0	0.01	0.01	0.01	10.0	0.01	0.01	0.01	90.0	0.03	0.01	0.01	0. 28	0.01	8
292 % of all valid observations for this period		0.01	0.01	900	0.01	0.01	0.01	0.01	0.01	0.01	0.01	90.0	9.8	0.01	0.01	8	00	9
293																		
294 GT 0.95 and LE 3.50		242	118	86	123	119	149	153	185	270	294	438	446	355	ક્ટ	345	321	3992
295 % of all valid observations for this stability class	ly class	5.80	1.37	1.15	1.42	1.38	1.72	1.77	2.14	3.12	3.40	5.07	5.16	4.11	3.53	3.99	4.06	46.19
296 % of all valid observations for this period		2.80	1.37	1.15	1.42	1.38	1.72	1.77	2.14	3.12	3.40	5.07	5.16	4.11	3.53	3.99	4.06	46.19
297								-										
298IGT 3.50 and LE 7.50		388	2	51	49	8	203	154	222	536	101	51	71	159	195	308	593	3013
299 % of all valid observations for this stability class	N class	4.22	1.20	0.59	0.57	9.	2.35	1.78	2.57	3.43	1.17	0.59	0.82	1.84	2.26	3.58	6.86	34.86
300 % of all valid observations for this period		4.22	- 8	0.59	0.57	2	2.35	1.78	2.57	3.43	1.17	0.59	0.82	1.84	2.26	3.58	6.86	34.86
301										-								
302 GT 7.50 and LE 12.50		236	59	2	2	6	19	0	18	160	64	17	24	74	223	150	561	1318
3031% of all valid observations for this stability class	ty class	2.73	99.0	80	80.0	0.10	0.22	00:0	0.21	1.85	0.74	0.20	0.28	0.86	2.58	1.74	3.62	15.25
304 % of all valid observations for this period		2.73	0.68	0.02	90.0	0.10	0.22	000	0.21	1.85	0.74	0.20	0.28	0.86	2.58	1.74	38	15.25
305																-	-	0
306 GT 12.50 and LE 18.50		ස	80	0	0	6	=	0	0	33	6	2	-	8	3	አ	3	9/2
307 % of all valid observations for this stability class	ty class	0.45	0.09	00.0	00.0	00:0	0.01	00.0	0.00	0.37	0,10	8	0.01	0.21	0.93	0.62	0.37	3.19
308 % of all valid observations for this period		0.45	0.09	00.0	00.0	00:0	10.01	0.00	0.00	0.37	0.10	8	0.01	0.21	0.93	0.62	0.37	3.19
308														-				
310 GT 18.50 and LE 24.50		0	0	0	0	0	0	0	0	0	٥	0	۰	0	8	8	0	9
311 % of all valid observations for this stability class	ty class	000	0.0	0.00	0.00	0.00	0.0	0.00	0.00	000	8	000	8	8	0.09	89	0.0	0.13
312 % of all valid observations for this period		0.00	0.00	0.00	00:0	0.00	0.00	0.00	8	8	8	000	8	8.0	0.09	89.0	8	0.19
313																		
314 GT 24.50		0	0	0	0	0	0	0	0	٥	0	0	0	0	0	-	0	-
315 % of all valid observations for this stability class	ty class	80	00.00	0.0	00.0	0.00	0.00	0.00	0.0	0.00	0.00	8	000	0.00	0.0	0.01	80.0	9
316 % of all valid observations for this period		800	0.00	00.00	0.00	00:0	0.00	00.0	0.00	0.00	0.0	0.0	0.00	0.00	0.0 0	0.01	8	9
317																		
318 All Velocities		883	88	156	175	219	373	308	426	759	469	513	545	607	812	869	1238	8642
319 % of all valid observations for this stability class	ty class	10.22	3.36	1.81	20.02	2.53	4.32	3.56	4.93	8.78	5.43	5.94	6.31	8.	9.40	10.06	33	8
320 % of all valid observations for this period		10.22	3.36	1.81	2.02	2.53	4.32	3.56	6.93	8.78	5.43	5.94	6.31	7.02	9.40	10.06	14.33	0.00 0.00

APPENDIX A

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT Supplemental Information for 2000

Facility: Vermont Yankee Nuclear Power Station

Licensee: Vermont Yankee Nuclear Power Corporation

1. OFF-SITE DOSE CALCULATION MANUAL (ODCM) - DOSE AND DOSE RATE

ODCM Control Number and Category Limit **Noble Gases** a. 3.3.1.a Total body dose rate 500 mrem/yr 3000 mrem/yr 3.3.1.a Skin dose rate 5 mrad in a quarter 3.3.2.a Gamma air dose 10 mrad in a year 3.3.2.b Gamma air dose 10 mrad in a quarter 3.3.2.a Beta air dose 20 mrad in a year 3.3.2.b Beta air dose Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form With Halfb. Lives Greater Than 8 Days 1500 mrem/yr 3.3.1.b Organ dose rate 3.3.3.a Organ dose 7.5 mrem in a quarter 15 mrem in a year 3.2.2.b Organ dose Liquids c. 3.2.2.a Total body dose 1.5 mrem in a quarter 3 mrem in a year 3.2.2.b Total body dose 5 mrem in a quarter 3.2.2.a Organ dose 10 mrem in a year 3.2.2.b Organ dose

2. ODCM SECTION LIMITS CONCENTRATION

ODCM Control Number and Category

Limit

a. Noble Gases No ECL Limits

b. <u>Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form With Half-Lives</u>

Greater Than 8 Days No ECL Limits

ODCM Control Number and Category

Limit

- c. Liquids
 - 3.2.1 Total fraction of ECL excluding noble gases (10CFR20, Appendix B, Table 2, Column 2):

<1.0E+01

3.2.1 Total noble gas concentration:

<2E-04 uCi/ml

3. AVERAGE ENERGY

Provided below are the average energy (E) of the radionuclide mixture in releases of fission and activation gases, if applicable.

- a. Average gamma energy: Not Applicable
- b. Average beta energy: Not Applicable

4. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Provided below are the methods used to measure or approximate the total radioactivity in effluents and the methods used to determine radionuclide composition.

a. Fission and Activation Gases

Continuous stack monitors monitor the gross Noble Gas radioactivity released from the plant stack. Because release rates are normally below the detection limit of these monitors, periodic grab samples are taken and analyzed for the gaseous isotopes present. These are used to calculate the individual isotopic releases indicated in Table lB and the totals of Table lA. The error involved in these steps may be approximately ±23 percent.

b. <u>Iodines</u>

Continuous isokinetic samples are drawn from the plant stack through a particulate filter and charcoal cartridge. The filters and cartridges are normally removed weekly and are analyzed for Iodine-131, 132, 133, 134, and 135. The error involved in these steps may be approximately ±18 percent.

c. Particulates

The particulate filters described in b. above are also counted for particulate radioactivity. The error involved in this sample is also approximately ±18 percent.

d. Tritium

ODCM Control Table 4.1.2 requires as a minimum that grab samples from the plant stack be taken monthly and analyzed for tritium. The stack sampling design included a cold trap collection device for this sample collection. The error involved in this sample is approximately ±15 percent.

e. Used Oil

Prior to issuing the permit to burn a tank of radioactively contaminated used oil, one liter of the oil is analyzed by gamma spectroscopy to determine concentrations of radionuclides that meet or exceed the required LLD for all of the liquid phase radionuclides listed in ODCM Control Table 4.2.1.

Monthly, samples from tanks that were issued burn permits are sent to the contracted laboratory for compositing and analysis. The laboratory analyzes for tritium, alpha, Fe-55, Sr-89, and Sr-90 on the composite sample.

The error involved in this sample is approximately ±15 percent.

f. Liquid Effluents

If radioactive liquid effluents are to be released from the facility, they are continuously monitored. Measurements are also required on a representative sample of each batch of radioactive liquid effluents released. For each batch, station records are retained of the total activity (mCi) released, concentration (μ Ci/ml) of gross radioactivity, volume (liters), and approximate total quantity of water (liters) used to dilute the liquid effluent prior to release to the Connecticut River.

Each batch of radioactive liquid effluents to be released is analyzed for I-131 and gamma isotopic radioactivity prior to release. Once per month, one batch is analyzed prior to release for dissolved and entrained gases. A monthly proportional composite sample, comprising an aliquot of each batch released during a month, is analyzed for tritium and gross alpha radioactivity. A quarterly proportional composite sample, comprising an aliquot of each batch released during a quarter, is analyzed for Sr-89, Sr-90, and Fe-55.

5. BATCH RELEASES

a. Liquid

There were no routine liquid batch releases during the reporting period.

b. Gaseous

There were no batch releases from burning used oil during the reporting period. The gaseous releases from burning used oil are treated as either batch or continuous releases based on the total hours of burning in a calendar quarter.

There was one gaseous batch release from the plant stack during the third quarter. At 1630 on 9/13/01, a manual reactor scram and turbine trip was inserted due to degrading condenser vacuum. The condenser was isolated and all gases were retained in the condenser. At 1704 on 9/13/01, the Mechanical Vacuum Pump was placed in service to maintain vacuum on the condenser. The Mechanical Vacuum Pump took suction on the condenser and discharged the gases to the plant stack after a ½ hour decay period. From review of the stack monitor trend plots, the levels returned to background levels seven hours later.

6. <u>ABNORMAL RELEASES</u>

a. Liquid

There were no nonroutine liquid releases during the reporting period.

b. Gaseous

There were no nonroutine gaseous releases (measured) during the reporting period.

APPENDIX B

LIQUID HOLDUP TANKS

<u>Requirement:</u> Technical Specification 3.8.D.1 limits the quantity of radioactive material

contained in any outside tank. With the quantity of radioactive material in any

outside tank exceeding the limits of Technical Specification 3.8.D.1, a description of the events leading to this condition is required in the next annual Radioactive Effluent Release Report per ODCM Section 10.1.

Response: The limits of Technical Specification 3.8.D.1 were not exceeded during

this reporting period.

APPENDIX C

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

Requirement: Radioactive liquid effluent monitoring instrumentation channels are required

to be operable in accordance with ODCM Control Table 3.1.1. If an

inoperable radioactive liquid effluent monitoring instrument is not returned to operable status prior to a release pursuant to Note 4 of Table 3.1.1, an explanation in the next annual Radioactive Effluent Release Report of the reason(s) for delay in correcting the inoperability are required per ODCM

Section 10.1.

Response: Since the requirements of ODCM Control Table 3.9.1 governing the

operability of radioactive liquid effluent monitoring instrumentation were

met for this reporting period, no response is required.

APPENDIX D

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

Radioactive gaseous effluent monitoring instrumentation channels are required to be operable in accordance with ODCM Control Table 3.1.2. If inoperable gaseous effluent monitoring instrumentation is not returned to operable status within 30 days pursuant to Note 5 of Table 3.1.2, an explanation in the next annual Radioactive Effluent Release Report of the reason(s) for the delay in correcting the inoperability is required per ODCM 10.1

required per ODCM 10.1.

Requirement:

Response: Since the requirements of ODCM Control Table 3.1.2 governing the operability of

radioactive gaseous effluent monitoring instrumentation were met for this reporting

period, no response is required.

APPENDIX E

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Requirement:

The radiological environmental monitoring program is conducted in accordance with ODCM Control 3.5.1. With milk samples no longer available from one or more of the sample locations required by ODCM Control Table 3.5.1, ODCM 10.1 requires the following to be included in the next annual Radioactive Effluent Release Report: (1) identify the cause(s) of the sample(s) no longer being available, (2) identify the new location(s) for obtaining available replacement samples and (3) include revised ODCM figure(s) and table(s) reflecting the new location(s).

Response:

One change was needed in the milk sampling locations specified in ODCM Control Table 3.5.1 due to sample unavailability during the reporting year. Meadow Crest Farm went out of business in 2000. The last sample was collected from Meadow Crest Farm in November of 2000. Vermont Yankee already had the Miller Farm included in the Radiological Environmental Monitoring Program as an additional, but not required, location. With the loss of Meadow Crest Farm, the Miller Farm became the ODCM required location in replacement of the Meadow Crest Farm for both milk samples and silage samples.

See Appendix H for the description of the revisions to the ODCM during 2000. The copies of the ODCM revisions are not included in this report but are submitted to the NRC separately. The ODCM figure(s) and table(s) reflecting the change in status for the Miller Farm and the elimination of Meadow Crest Farm were included in Revision 26.

APPENDIX F

LAND USE CENSUS

Requirement: A land use census is conducted in accordance with ODCM Control 3.5.2.

With a land use census identifying a location(s) which yields at least a 20 percent greater dose or dose commitment than the values currently being calculated in ODCM

Surveillance 4.3.3, ODCM 10.1 requires the identification of the new location(s) in the next annual Radioactive Effluent Release Report.

Response: The Land Use Census was completed in the third quarter of 2000. No locations

yielded a 20 percent greater dose or dose commitment than the values currently

being calculated in ODCM Surveillance 4.3.3.

APPENDIX G

PROCESS CONTROL PROGRAM

Requirement:

Technical Requirements Manual (TRM) 6.12.A.1 requires that licensee initiated changes to the Process Control Program (PCP) be submitted to the Commission in the annual Radioactive Effluent Release Report for the period in which the change(s) was made.

Response:

In 1999, the PCP was put into a procedure, PP 7504. In 2000, changes were made to the Process Control Program (PCP) and issued as Revisions 1 and 2 to PP 7504. The following copies of the Procedure Revision Control Form for each revision supply the required documentation that each revision was reviewed by PORC and approved by the Vice President of Operations, as required by TRM 6.12.A.1.c. The attached copies of the memorandums to PORC describe the changes to the PCP (PP 7504) for each revision. The two revisions to the Process Control Program are included.

These changes to the PCP have not affected TRM Section 6.12.

A determination was made that the changes do not reduce the overall conformance of the dewatered spent resins/filter media waste product to existing criteria for solid waste shipments and disposals.

The revisions do not affect Technical Specifications and do not affect any system or process described in the FSAR and a review of VOQAM was done with no findings.

These changes were reviewed against AP 6002.02; it was determined that no safety evaluation was required for either revision.

MEMORANDUM

DATE: JULY 26, 2000

TO: PORC

CC: M. DESILETS

FROM: TIM MCCARTHY

RE: PP 7504, REV.1: PROCESS CONTROL PROGRAM

This procedure is required to be reviewed by PORC due to TRM 6.12.A.2. The complete review contains the following revisions due to commitment item INF 99015 00, QA surveillance (2000-12), transition issues and recommendations. The procedure was reviewed against the original design and operation, standing orders and procedure change recommendations per VYAPF 0095.01.

- Added to References: NRC Info Notice (IN) 97-51 and NRC Bulletin 96-02
- QA audit items: changed reference for dewatering procedure from OP2511 to OP 2153. AP 0619 (chemical control requirements) to PP 7602., reference appendix F to App. G.
- Title changes: VP Ops, Ops Superintendent
- Removed reference to the old procedure process. AP 0037...

This revision does not affect Tech Specs and does not affect any system or process described in the FSAR or TRM. A review of VO QAM was done with no findings.

This change was reviewed against AP 6002.02; it was determined that no safety evaluation is required.

I have determined that the changes implemented in Rev. 1 of PP 7504 did not reduce the overall conformance of the dewatered spent resins/filter media waste product to existing criteria for solid waste shipments and disposal.

PROCEDURE REVISION CONTROL FORM

PART 1 - Initiation					
A. Procedure No.	Revision No Title	Process Control	rogram		
B. Review Criteria: D'Partial Complete C. Periodic Review Cycle: 2 Year 5 Year					
	Reasons for Procedure/C				
VY,	APF 0095.01 change	es per DA Survellace.	; See Attached		
٧٢	APF 0095 01 change	es Per OA Survellance	2001-12 seentbacker		
	, , G	_	1		
•					
	•				
E. Originator Nam	e (Print):		Telephone Extension:		
	John TM	CCA2th,	5476		
7176			-		
PART 2 - Reviews A. Technical Verification	ication Reviewer P	Walk-Through Validation:	∏ Required □ N/A		
(Print/Sign/Date)), , ,		~		
MPD/Mikalkins	5 / 3/29/00 OF	ield Walk-Through 🗹 Table-	Top Simulator Validation		
	e Reviews: (Refer to Appe	endix A)	N/A		
Position	Name	Signature	. Date		
Ops SupTi	K. Bronson	Kol Summ	3/30/00		
Vl 085	S. Newton	San Nouter	6/21/00		
D. Safety Evaluati	on Per AP 6002, Prepari	ng 50.59 Evaluations			
M 50 50(a)(1) S	reaning completed and att	ached Safaty Evaluation NO	T romirad		
, ,	afety Evaluation completed	ached, Safety Evaluation NO and attached.	r redimerr		
	Evaluation: N/A				
1		: 10CFR50.54(q) evaluation con	apleted per AP 3532 and attached.		
	REVIEWER: (Print/Sign/I	Date)	Philos		
G. ORIGINATOR			7/11/ 00		
☑ Comments Resolv		sidered√ ☐ Procedure Clerk/I	ypist Final Type/Prooftead		
(Print/Sign/Date)	Jam / Sme	-7/11/00			
)	7771 77		
	V		VYAPF 0096.01 AP 0096 Original		
	•		Page 1 of 2		
			1001		

PROCEDURE REVISION CONTROL FORM (Continued)

PART 3 - Training/Notification Requirements				
A. Indicate training or notifications required to implemen	t procedure	: (Requir	ed for Adm	inistrative
Procedures)				
☐ Include in formal training (TCR submitted):				
☐ E-Mail notification:				
☐ Crew Briefings:			:	
Other: None				
PART 4-PORC				alian temperatura
Plant Operation Review Committee: Required N/A				
Meeting No: PORC Secretary: Date 3000-042 M.M. Houle	e: 7/36/00	Plant N	Ianager: Ba <i>ldum</i>	7/26/00
PART 5 - Approval				
A. Responsible Procedure Owner: (Print/Signature/Date)				
M. Desilets Michael Wester 1/28/00				:
B. Special Instructions: N/A				
Approved for Training				• .
☐ Issue on DATE:	· · · · · · · · · · · · · · · · · · ·	·- · · · · ·	•	··· ·
☐ Submit Surveillance Database Change per AP 4000				
☐ Other:	<u>.</u>	:	<u> </u>	
PART 6 - Issuance		wa		
Procedure Change No.: 96				
Date procedure issued: _ 8/1/07				
Notes:	<u> </u>			
		- 		•
		•	•	

VERMONT YANKEE NUCLEAR POWER STATION

PROGRAM PROCEDURE

PP 7504

REVISION 1

PROCESS CONTROL PROGRAM

USE CLASSIFICATION: INFORMATION

LPC No.	Affected Pages

Implementation Statement: N/A

Issue Date: 08/08/00

TABLE OF CONTENTS

PURPOSE		3
DISCUSSION	· · · · · · · · · · · · · · · · · · ·	. 3
REFERENCES	<u> </u>	.3
APPENDICES, ATTACHMENTS AND FIGURES		4
PROGRAM SCOPE	• • • • • • • • • • • • • • • • • • • •	4
ORGANIZATION, AUTHORITIES AND RESPON	SIBILITIES	_ <u>5</u>
IMPLEMENTING PROCEDURES AND DOCUM	ENTS	6
FINAL CONDITIONS		7.A.

PURPOSE

The Vermont Yankee Nuclear Power Plant Process Control Program (PCP) describes the administrative and technical controls of the radioactive waste systems which provide assurance that Vermont Yankee meets federal shipping and burial site requirements.

The PCP complies with Technical Specification 3/4.8.N and TRM 6.12 by describing process parameters, controls, tests, sampling and analysis to ensure compliance with 10 CFR 20, 10 CFR 71, 10 CFR 61 (Energy), and 49 CFR 172-173 (Transportation); State and burial site regulatory requirements.

DISCUSSION

This procedure functions as the document for describing the current process for administrating radioactive waste which applies to Vermont Yankee. This procedure:

- Lists all of the current waste streams that have been identified, and processes that VY utilizes.
- Lists approved burial containers which comply with site criteria for stabilized waste.
- Describes waste class determination protocols which comply with burial site and federal regulations.
- States the regulations and procedures which implement the process control program.

REFERENCES

- 1. Technical Specifications
 - a. 3/4.8.N
- 2. Technical Requirements Manual
 - a. 6.12
- 3. Administrative Limits
 - a. None
- 4. Other
 - a. 49 CFR 172-173
 - b. 10 CFR 20 1
 - c. 10 CFR 71
 - d. 10 CFR 61
 - e. CNS Burial Site Criteria
 - f. CNS RDS-1000 Dewatering System Manual
 - g. VOQAM, Operational Quality Assurance Manual

- h. NRC Information Notice (IN) 97-51, Problems Experienced with Loading and Unloading Spent Fuel Storage and Transportation Casks, Issued July 11, 1997 (Accession Number 9707080365).
- i. NRC Bulletin 96-02, Movement of Heavy Loads Over Fuel, Over Fuel in the Reactor Core, or Over Safety-Related Equipment, April 11, 1996 (Accession Number 9604080259).
- h. AP 0504, Shipment of Radioactive Materials
- i. AP 0619, Chemical Material Control
- i. OP 2151, Liquid Radwaste
- k. OP 2153, Solid Radwaste
- I. OP 2511, Radwaste Cask/Liner Handling
- m. OP 2512, Radwaste Drum, Box and Sealand Handling
- n. OP 2527, Sampling and Analysis for Radwaste Classification
- o. AP 6805, Document Control
- p. PP 7503, Hazardous Waste Program

APPENDICES, ATTACHMENTS AND FIGURES

1. None

PROGRAM SCOPE

1. Applicability

This program properly describes the processing of waste materials generated as part of plant operations and applies to activities which generate radioactive waste materials at Vermont Yankee.

2. Objectives

The objective of the Process Control Program is to maintain an effective program for identifying, controlling, testing, sampling and processing waste materials generated at VY, specifically;

- a. To ensure personnel safety along with minimizing exposures through personnel knowledge, awareness and proper handling techniques / practices;
- b. To properly identify, process and classify waste streams generated as a result of operations and maintenance activities at VY;
- c. To conduct all waste activities in compliance with pertinent regulations, permits, and licenses.

ORGANIZATION, AUTHORITIES AND RESPONSIBILITIES

1. Organization

Operations, Maintenance and Radiation Protection Departments' personnel are identified on the Vermont Yankee Organizational Chart. Specific individuals within the departments have varying degrees of involvement depending on their level and scope of training.

The size of the organization can expand temporarily as special needs arise or additional support or expertise is required. Permanent modifications to the organizational chart or increases in support personnel numbers beyond authorized resources require additional management approvals and shall be controlled by the appropriate corporate policies.

2. Responsibilities

A brief description of management level responsibilities is outlined below. More detailed responsibilities and specific authorities are defined in individual position descriptions or identified in approved policies, procedures or management directives.

- a. <u>VP of Operations</u> <u>Ultimate responsibility for corporate and plant activities to ensure safe, effective and proper administrative controls concerning radioactive waste operations. Review required per TRM.</u>
- b. <u>Plant Manager</u> <u>Maintains</u> responsibility for safe, orderly and efficient operation of the VY Plant and therefore maintains control of any and all radioactive waste operations.

This position reports to the VP of Operations.

c. <u>Technical Services Superintendent (TSS)</u> - Responsible for the proper conduct of radioactive waste activities to ensure personnel, public and environmental health and safety. The TSS shall ensure that goals which support the objectives of this program are established and performance indicators are defined to monitor the effectiveness of the Process Control Program.

This position reports to the Plant Manager.

d. <u>Radiation Protection Manager (RPM)</u> - Responsible for managing radioactive waste to ensure the health and safety of Plant personnel, the general public and the environment; and to ensure that all waste activities are performed in support of the objectives of this program.

This position reports to the TSS.

- e. <u>Operations Superintendent (OS)</u> Responsible for the day to day operational activities of the solid and liquid waste streams. The OS ensures procedure implementation and compliance for all operational radioactive waste processes.
- f. Radwaste Supervisor (RWS) Responsible for development and implementation of the radioactive waste program, to ensure compliance with all regulatory requirements. The RWS shall keep abreast of amendments to existing waste regulations proposed by state and federal agencies and ensure applicable procedures are current.

This position reports to the RPM.

NOTE

Worker responsibilities are addressed through General Employee Training (GET) Requalification and Employee Continuing Training Programs.

IMPLEMENTING PROCEDURES AND DOCUMENTS

Generally, management approval and direction for hazardous waste activities is demonstrated in the review and approval process for plant procedures. Specific key elements of the program are outlined and described below with a basic philosophy or approach provided.

1. Procedures

- a. Controls for waste activities are written in the form of administrative and operational procedures. Procedures are to be considered as management directives and are expected to be followed.
- b. Written procedures shall contain sufficient detail to ensure satisfactory compliance with the work effort, but need not delineate basic skills normally possessed by qualified personnel as determined and described in the Training and Qualification Section of this procedure. Training prerequisites are outlined in AP 0504, Shipment of Radioactive Material.
- c. Vendor technical information shall be used as reference material in the preparation of procedures and should be used as guidance in conjunction with specific tasks, if appropriate.

2. Training and Qualification

a. Performance-based, accredited training programs are approved, in place and functional for Technical Staff and Managers, Supervisor Development, Operations, Maintenance and Radiation Protection Technicians.

Program performance monitoring and control of content is accomplished through direct interaction between department supervision and management, the Technical Services Superintendent and the Training Department.

- b. Job posting and individual position descriptions establish the minimum qualifications. General knowledge and basic skill levels are demonstrated through testing of job applicants.
- c. The RWS, integral with the Training Department, maintains and ensures the assignment of qualified personnel to perform duties in support of program objectives. This is accomplished through personnel observation, interaction and varying degrees of direct supervision. Training prerequisites are outlined in AP 0504, Shipment of Radioactive Material.
- d. Contracted services, whether integrated with staff personnel or assigned specific tasks, are verified to have the necessary qualifications and training prior to commencement of work activities.

3. Performance Indicators

Performance indicators are an important element of any program which enable the program owner to conduct timely assessments of the effectiveness of a program.

The RWS shall monitor the effectiveness of the program efforts by generating and trending the following performance indicators, as a minimum:

- Number of event reports or observations generated as result of improper control of radioactive waste stream items.
- Number of event reports or observations generated as result of procedure violations concerning radioactive waste handling operations.
- Timeliness of program updates resulting from regulatory changes.

4. General Implementation

Implementation of this program is generally controlled by approved procedures. This section does not supersede or eliminate the need for specific procedures when appropriate. The topics contained in this section illustrate management approval and direction for those areas identified.

a. Solidification

Vermont Yankee Nuclear Power Corporation does not routinely solidify liquid waste. If the use of solidification to dispose of any liquid waste is required, it will be done by an outside vendor under the vendor's PCP. The vendor PCP will be reviewed and approved by the Plant Health Physicist, the Radiation Protection Manager, PORC, Plant Manager and VP of Operations prior to implementation. This review is to identify that there is sufficient supporting documentation of the vendor's PCP to give assurance that the final product will meet all requirements for transport and burial, and that sufficient procedural controls exist to assure safe operations. [TS 4.8.N]

b. Cartridge Filter Elements

Low activity cartridge filter elements (<200 mR/hr @ 30cm) will be air dried (~24hr or as determined by the Radwaste Supervisor) and handled as dry active waste. Filters determined to be above the dose limitations per 49 CFR, will be placed in casks. The liner shall be dewatered by the RDS-1000 System or a similar approved system and then shipped for disposal.

c. Resins

Normal operations produce radioactive waste in the form of depleted resins. These resins are processed in the burial container using a rapid dewatering system (RDS-1000) manufactured by Chem-Nuclear Systems, Inc. [OP 2153]

The system has been tested, by Chem-Nuclear, for certification in meeting the Barnwell Site Criteria and disposal requirement for free standing liquid. These tests are described in Chem-Nuclear's Topical Report on the RDS-1000 Radioactive Waste Dewatering System. In addition, to comply with the statement, "Any liquids present in waste packages shall be non-corrosive with respect to the container," Vermont Yankee tested the pH of various resin mixtures used by the plant in solution with water. The range was found to be 4.2 - 8.4. A solution is not considered corrosive if the pH is greater than 4.0 and less than 10.0.

A resin sample is taken from each liner prior to shipment. The sample is counted to determine the activity and waste classification. Class A resins that exceed 1.0 uCi/cc of isotopes with greater than 5 year half-lives and all Class B and C resins will be disposed of in an approved High Integrity Container (HIC).

Vendor supplied or temporary methods of processing resins may be used in lieu of the above process provided that the vendor or temporary process meets the requirements of quality described above and does not conflict with accepted burial criteria or safety requirements. Such methods will be reviewed and approved by the personnel stated in 4.a prior to implementation.

d. Filter Liners

During refueling outages and normal operation, liquid radwaste processing may require use of a decanting filter on the condensate phase separators. A floating suction is used to decant the water and resin into a filter liner. Filtered water is pumped from the liner. The liner is dewatered in accordance with OP 2153 (MOOID9409-03) such that the burial site criterion for free-standing water is met. A resin sample is taken from the liner and analyzed to determine the activity and waste classification.

e. Dry Active Waste (DAW)

DAW is compacted, as practical, or shipped to a vendor that sorts the material for processing or recycling. All DAW is examined before being compacted or shipped. Any liquids or items found that would compromise the integrity of the package are removed and separated as specified by procedure [OP 2512]. DAW which includes compactable, incinerable and metal materials are segregated in the plant and transported to the applicable sealand container, then shipped to the appropriate/cost effective off-site processor. If deemed practical, the DAW will be surveyed and free-released onsite, if possible. Containers used for DAW shipments meet the criteria of 49 CFR 173.425a. or b. "No leakage of radioactive material," as specified in 49 CFR 173.425.b.1 will be met provided that no radioactive materials in quantities equal to or exceeding those specified in 49 CFR 173.443 are detected on the external surfaces of the package at any time during shipment.

f. Chelating Agents

In order to comply with 10 CFR 20 Appendix G, chelating agents are controlled by the plant chemistry department using procedure_AP 7602.

g. Explosive Waste

No waste capable of detonation or of explosive decomposition or reaction will be disposed as per 10 CFR 61.56(a)(4). Refer to MSDS via AP 7602.

h. Toxic Waste

No waste capable of generating toxic gases, vapors, or fumes will be disposed as per 10 CFR 61.56(a)(5). Refer to MSDS via AP 7602.

i. Pyrophoric Waste

No waste that is pyrophoric will be disposed as per 10 CFR 61.56(a)(6). Refer to MSDS via AP 7602.

j. High Integrity Containers (HICs)

Vermont Yankee Nuclear Power Plant has contracted with various suppliers of approved HICs. South Carolina has approved PCPs for HICs used by Vermont Yankee. Any HIC Vermont Yankee may choose to use at some future time, will meet all applicable requirements.

k. Waste Class Determination

Along with an approved outside laboratory, Vermont Yankee periodically performs laboratory analysis on all waste streams to determine the activity of radionuclides listed in Tables 1 and 2 of 10 CFR 61. Correlation analysis verifies that the relative concentration of each radionuclide, with respect to the overall activity in a given Vermont Yankee waste stream, remains constant over time. A set of scaling factors is determined which allows the activity of 10 CFR 61 radionuclides to be estimated using the results of gamma spectrometric analysis or direct gamma dose rate measurements.

For resin wastes, analysis is performed on samples of each source of resin comprising the contents of a burial container. Scaling factors are applied to the activity of radionuclides identified by gamma spectrometry analysis to determine the activity of those radionuclides which are not detected in the gamma spectrum.

For DAW, dose rate-to-curie conversion calculations are performed to determine the total activity present in a container. Scaling factors are applied to the container's total curie content to determine the activity of individual radionuclides.

Specific procedures for determining 10 CFR 61 scaling factors are contained in OP 2527, "Sampling and Analysis for Radwaste Classification." Once the activity of each radionuclide in a burial container is estimated, the waste classification is derived using methods required by 10 CFR 61. Specific procedures for waste class determination are contained in AP 0504, "Shipment of Radioactive Material."

I. <u>Mixed Waste</u>

No mixed waste will be disposed as per 10 CFR 61.56(a)(8) unless properly treated. Refer to MSDS via AP 7602.

FINAL CONDITIONS

1. This procedure is retained per AP 6805.

MEMORANDUM

DATE: SEPT. 18, 2000

TO: PORC

CC: J. GEYSTER

FROM: TIM MCCARTHY

RE: PP 7504, REV.2: PROCESS CONTROL PROGRAM

This procedure is required to be reviewed by PORC due to TRM 6.12.A.2. The partial review contains the following revisions due to commitment items. The procedure was reviewed against the original design and operation, standing orders and procedure change recommendations per VYAPF 0095.01.

Added tech spec references to procedure under Purpose

This revision does not affect Tech Specs and does not affect any system or process described in the FSAR or TRM. A review of VO QAM was done with no findings.

This change was reviewed against AP 6002.02; it was determined that no safety evaluation is required.

I have determined that the changes implemented in Rev. 2 of PP 7504 did not reduce the overall conformance of the dewatered spent resins/filter media waste product to existing criteria for solid waste shipments and disposal.

NEW/REVISED PROCEDURE CONTROL FORM

PART 1 - Initiation				
A. Procedure No.	New Revision Title	Process Co	introllrogram	
B. Review Criteria: Review Cycle: 2 Year 5 Year				
D. List DIs & LPCs:				
E. Description and	Reasons for Procedure/Ch. ADD Tech Spec.	anges: Reference	s to procedur	c
F. Originator Nam	e (Print): John MC	Cx- Hy	-	ne Extension: 54)し
PART 2 - Reviews				
A. Walk-Through	Validation: ☐ Required	□ N/A	B. Technical Verification (Print/Sign/Date)	ation Reviewer
☐ Field Walk-Through	gh 🏂 Table-Top 🗆 Simulat	or Validation	R. Morrissetto G.	Kouvette
C. Cross-Discipline	Reviews: (Refer to Appen	dix B)		□ N/A
Position	Name	Sig	gnature	Date
RPM	Genster	Jol f 35		10/18/00
VP Ops	BALDUZZi	masu	dugs:	4/12/01
				•
D. Safety Evaluation Per AP 6002, Preparing 50.59 Evaluations				
E. 10CFR50.54(q) Evaluation: JKN/A				
☐ Emergency Plan Implementing Procedure: 10CFR50.54(q) evaluation completed per AP 3532 and attached.				
F. QUALIFIED REVIEWER: (Print/Sign/Date)				
G. ORIGINATOR: Comments Resolved Verify All DI & LPCs Considered Sent to Procedure Clerk/Typist for Final Type (Procedure Clerk/Typist Initial/Date KALL 10/13/00) Proofread (Print/Sign/Date)				

NEW/REVISED PROCEDURE CONTROL FORM (Continued)

PART 3 - Training/Notification Requirements
A. Indicate training or notifications required to implement procedure: (Required for Administrative
Procedures)
☐ Include in formal training (TCR submitted):
M
E-Mail notification:
☐ Crew Briefings:
Other:
U Other.
PART 4 - PORC
Plant Operation Review Committee: Required N/A
Meeting No: PORC Secretary: Date: Plant Manager: 10-15-00
2000-056 M.M. Howle 10-18-00 F. ()
PART 5 - Approval
A. Responsible Procedure Owner: (Print/Signature/Date)
ROMERT SOTA POLES 10-25-61
ROSERT SOTUR LOCK NO 2500
B. Special Instructions: DN/A
B. Special instructions: 2 14/A
☐ Approved for Training
Li Approved for Training
☐ Issue on DATE:
☐ Submit Surveillance Database Change per AP 4000
☐ Other:
PART 6 - Issuance
Procedure Change No.: 972
Date procedure issued:
Notes:

VERMONT YANKEE NUCLEAR POWER STATION

PROGRAM PROCEDURE

PP 7504

REVISION 2

PROCESS CONTROL PROGRAM

USE CLASSIFICATION: INFORMATION

LPC No.	Effective Date	Affected Pages

,	
ı	Implementation Statement: N/A
ı	

Issue Date: 11/03/00

TABLE OF CONTENTS

PURPOSE	3
POKPOSE	
DISCUSSION	3
REFERENCES	
APPENDICES, ATTACHMENTS AND FIGURES	4
PROGRAM SCOPE	4
PROGRAM SCOPE	
ORGANIZATION, AUTHORITIES AND RESPONSIBILITIES	5
IMPLEMENTING PROCEDURES AND DOCUMENTS	6
FINAL CONDITIONS	
EINAL CONDITIONS	10

PURPOSE

The Vermont Yankee Nuclear Power Plant Process Control Program (PCP) describes the administrative and technical controls of the radioactive waste systems which provide assurance that Vermont Yankee meets federal shipping and burial site requirements.

The solid radwaste system shall be used in accordance with this procedure as described in TRM Section 6.12 to process wet radioactive waste (spent resins/filter sludge) to meet shipping and burial ground requirements. If these requirements are not satisfied, shipments of defectively processed or defectively packaged solidified wet radioactive wastes from site, will be suspended. Verification of solidification of wet waste shall be performed as required in accordance with this procedure.

Solidification is defined as the conversion of wet wastes into a form that meets shipping and burial ground requirements. Suitable forms include dewatered resins and filter sludge.

The PCP complies with TRM 6.12 by describing process parameters, controls, tests, sampling and analysis to ensure compliance with 10 CFR 20, 10 CFR 71, 10 CFR 61 (Energy), and 49 CFR 172-173 (Transportation); State and burial site regulatory requirements.

DISCUSSION

This procedure functions as the document for describing the current process for administrating radioactive waste which applies to Vermont Yankee. This procedure:

- Lists all of the current waste streams that have been identified, and processes that VY utilizes.
- Lists approved burial containers which comply with site criteria for stabilized waste.
- Describes waste class determination protocols which comply with burial site and federal regulations.
- States the regulations and procedures which implement the process control program.

REFERENCES

- 1. Technical Specifications
 - a. None
- 2. Technical Requirements Manual
 - a. 6.12
- 3. Administrative Limits
 - a. None

4. Other

- a. 49 CFR 172-173
- b. 10 CFR 20
- c. 10 CFR 71
- d. 10 CFR 61
- e. CNS Burial Site Criteria
- f. CNS RDS-1000 Dewatering System Manual
- g. VOQAM, Operational Quality Assurance Manual
- h. NRC Information Notice (IN) 97-51, Problems Experienced with Loading and Unloading Spent Fuel Storage and Transportation Casks, Issued July 11, 1997 (Accession Number 9707080365).
- i. NRC Bulletin 96-02, Movement of Heavy Loads Over Fuel, Over Fuel in the Reactor Core, or Over Safety-Related Equipment, April 11, 1996 (Accession Number 9604080259).
- h. AP 0504, Shipment of Radioactive Materials
- i. AP 0619, Chemical Material Control
- j. OP 2151, Liquid Radwaste
- k. OP 2153, Solid Radwaste
- 1. OP 2511, Radwaste Cask/Liner Handling
- m. OP 2512, Radwaste Drum, Box and Sealand Handling
- n. OP 2527, Sampling and Analysis for Radwaste Classification
- o. AP 6805, Document Control
- p. PP 7503, Hazardous Waste Program

APPENDICES, ATTACHMENTS AND FIGURES

1. None

PROGRAM SCOPE

1. Applicability

This program properly describes the processing of waste materials generated as part of plant operations and applies to activities which generate radioactive waste materials at Vermont Yankee.

Objectives

The objective of the Process Control Program is to maintain an effective program for identifying, controlling, testing, sampling and processing waste materials generated at VY, specifically;

- a. To ensure personnel safety along with minimizing exposures through personnel knowledge, awareness and proper handling techniques / practices;
- b. To properly identify, process and classify waste streams generated as a result of operations and maintenance activities at VY;
- c. To conduct all waste activities in compliance with pertinent regulations, permits, and licenses.

ORGANIZATION, AUTHORITIES AND RESPONSIBILITIES

1. Organization

Operations, Maintenance and Radiation Protection Departments' personnel are identified on the Vermont Yankee Organizational Chart. Specific individuals within the departments have varying degrees of involvement depending on their level and scope of training.

The size of the organization can expand temporarily as special needs arise or additional support or expertise is required. Permanent modifications to the organizational chart or increases in support personnel numbers beyond authorized resources require additional management approvals and shall be controlled by the appropriate corporate policies.

2. Responsibilities

A brief description of management level responsibilities is outlined below. More detailed responsibilities and specific authorities are defined in individual position descriptions or identified in approved policies, procedures or management directives.

- a. <u>VP of Operations</u> Ultimate responsibility for corporate and plant activities to ensure safe, effective and proper administrative controls concerning radioactive waste operations. Review required per TRM.
- b. <u>Plant Manager</u> Maintains responsibility for safe, orderly and efficient operation of the VY Plant and therefore maintains control of any and all radioactive waste operations.

This position reports to the VP of Operations.

c. <u>Technical Services Superintendent (TSS)</u> - Responsible for the proper conduct of radioactive waste activities to ensure personnel, public and environmental health and safety. The TSS shall ensure that goals which support the objectives of this program are established and performance indicators are defined to monitor the effectiveness of the Process Control Program.

This position reports to the Plant Manager.

d. Radiation Protection Manager (RPM) - Responsible for managing radioactive waste to ensure the health and safety of Plant personnel, the general public and the environment; and to ensure that all waste activities are performed in support of the objectives of this program.

This position reports to the TSS.

e. Operations Superintendent (OS) - Responsible for the day to day operational activities of the solid and liquid waste streams. The OS ensures procedure implementation and compliance for all operational radioactive waste processes.

...

f. Radwaste Supervisor (RWS) - Responsible for development and implementation of the radioactive waste program, to ensure compliance with all regulatory requirements. The RWS shall keep abreast of amendments to existing waste regulations proposed by state and federal agencies and ensure applicable procedures are current.

This position reports to the RPM.

NOTE

Worker responsibilities are addressed through General Employee Training (GET) Requalification and Employee Continuing Training Programs.

IMPLEMENTING PROCEDURES AND DOCUMENTS

Generally, management approval and direction for hazardous waste activities is demonstrated in the review and approval process for plant procedures. Specific key elements of the program are outlined and described below with a basic philosophy or approach provided.

1. Procedures

- a. Controls for waste activities are written in the form of administrative and operational procedures. Procedures are to be considered as management directives and are expected to be followed.
- b. Written procedures shall contain sufficient detail to ensure satisfactory compliance with the work effort, but need not delineate basic skills normally possessed by qualified personnel as determined and described in the Training and Qualification Section of this procedure. Training prerequisites are outlined in AP 0504, Shipment of Radioactive Material.
- C. Vendor technical information shall be used as reference material in the preparation of procedures and should be used as guidance in conjunction with specific tasks, if appropriate.

2. Training and Qualification

a. Performance-based, accredited training programs are approved, in place and functional for Technical Staff and Managers, Supervisor Development, Operations, Maintenance and Radiation Protection Technicians.

Program performance monitoring and control of content is accomplished through direct interaction between department supervision and management, the Technical Services Superintendent and the Training Department.

b. Job posting and individual position descriptions establish the minimum qualifications.

General knowledge and basic skill levels are demonstrated through testing of job applicants.

- c. The RWS, integral with the Training Department, maintains and ensures the assignment of qualified personnel to perform duties in support of program objectives. This is accomplished through personnel observation, interaction and varying degrees of direct supervision. Training prerequisites are outlined in AP 0504, Shipment of Radioactive Material.
- d. Contracted services, whether integrated with staff personnel or assigned specific tasks, are verified to have the necessary qualifications and training prior to commencement of work activities.

3. Performance Indicators

Performance indicators are an important element of any program which enable the program owner to conduct timely assessments of the effectiveness of a program.

The RWS shall monitor the effectiveness of the program efforts by generating and trending the following performance indicators, as a minimum:

- Monthly and annual radwaste amounts generated for burial in cubic feet and cubic meters.
- Monthly radwaste generated prior to processing; accrual cost and cubic feet or pounds generated.

4. General Implementation

Implementation of this program is generally controlled by approved procedures. This section does not supersede or eliminate the need for specific procedures when appropriate. The topics contained in this section illustrate management approval and direction for those areas identified.

a. Solidification

Vermont Yankee Nuclear Power Corporation does not routinely solidify liquid waste. If the use of solidification to dispose of any liquid waste is required, it will be done by an outside vendor under the vendor's PCP. The vendor PCP will be reviewed and approved by the Plant Health Physicist, the Radiation Protection Manager, PORC, Plant Manager and VP of Operations prior to implementation. This review is to identify that there is sufficient supporting documentation of the vendor's PCP to give assurance that the final product will meet all requirements for transport and burial, and that sufficient procedural controls exist to assure safe operations.

b. Cartridge Filter Elements

Low activity cartridge filter elements (<200 mR/hr @ 30cm) will be air dried (~24hr or as determined by the Radwaste Supervisor) and handled as dry active waste. Filters determined to be above the dose limitations per 49 CFR, will be placed in casks. The liner shall be dewatered by the RDS-1000 System or a similar approved system and then shipped for disposal.

c. Resins

Normal operations produce radioactive waste in the form of depleted resins. These resins are processed in the burial container using a rapid dewatering system (RDS-1000) manufactured by Chem-Nuclear Systems, Inc. [OP 2153]

The system has been tested, by Chem-Nuclear, for certification in meeting the Barnwell Site Criteria and disposal requirement for free standing liquid. These tests are described in Chem-Nuclear's Topical Report on the RDS-1000 Radioactive Waste Dewatering System. In addition, to comply with the statement, "Any liquids present in waste packages shall be non-corrosive with respect to the container," Vermont Yankee tested the pH of various resin mixtures used by the plant in solution with water. The range was found to be 4.2 - 8.4. A solution is not considered corrosive if the pH is greater than 4.0 and less than 10.0.

A resin sample is taken from each liner prior to shipment. The sample is counted to determine the activity and waste classification. Class A resins that exceed 1.0 ψ Ci/cc of isotopes with greater than 5 year half-lives and all Class B and C resins will be disposed of in an approved High Integrity Container (HIC).

Vendor supplied or temporary methods of processing resins may be used in lieu of the above process provided that the vendor or temporary process meets the requirements of quality described above and does not conflict with accepted burial criteria or safety requirements. Such methods will be reviewed and approved by the personnel stated in 4.a prior to implementation.

d. Filter Liners

During refueling outages and normal operation, liquid radwaste processing may require use of a decanting filter on the condensate phase separators. A floating suction is used to decant the water and resin into a filter liner. Filtered water is pumped from the liner. The liner is dewatered in accordance with OP 2153 (MOOID9409-03) such that the burial site criterion for free-standing water is met. A resin sample is taken from the liner and analyzed to determine the activity and waste classification.

e. Dry Active Waste (DAW)

DAW is compacted, as practical, or shipped to a vendor that sorts the material for processing or recycling. All DAW is examined before being compacted or shipped. Any liquids or items found that would compromise the integrity of the package are removed and separated as specified by procedure [OP 2512]. DAW which includes compactable, incinerable and metal materials are segregated in the plant and transported to the applicable sealand container, then shipped to the appropriate/cost effective off-site processor. If deemed practical, the DAW will be surveyed and free-released onsite, if possible. Containers used for DAW shipments meet the criteria of 49 CFR 173.425a. or b. "No leakage of radioactive material," as specified in 49 CFR 173.425.b.1 will be met provided that no radioactive materials in quantities equal to or exceeding those specified in 49 CFR 173.443 are detected on the external surfaces of the package at any time during shipment.

f. Chelating Agents

In order to comply with 10 CFR 20 Appendix G, chelating agents are controlled by the plant chemistry department using procedure AP 7602.

g. Explosive Waste

No waste capable of detonation or of explosive decomposition or reaction will be disposed as per 10 CFR 61.56(a)(4). Refer to MSDS via AP 7602.

h. Toxic Waste

No waste capable of generating toxic gases, vapors, or fumes will be disposed as per 10 CFR 61.56(a)(5). Refer to MSDS via AP 7602.

i. Pyrophoric Waste

No waste that is pyrophoric will be disposed as per 10 CFR 61.56(a)(6). Refer to MSDS via AP 7602.

j. High Integrity Containers (HICs)

Vermont Yankee Nuclear Power Plant has contracted with various suppliers of approved HICs. South Carolina has approved PCPs for HICs used by Vermont Yankee. Any HIC Vermont Yankee may choose to use at some future time, will meet all applicable requirements.

k. Waste Class Determination

Along with an approved outside laboratory, Vermont Yankee periodically performs laboratory analysis on all waste streams to determine the activity of radionuclides listed in Tables 1 and 2 of 10 CFR 61. Correlation analysis verifies that the relative concentration of each radionuclide, with respect to the overall activity in a given Vermont Yankee waste stream, remains constant over time. A set of scaling factors is determined which allows the activity of 10 CFR 61 radionuclides to be estimated using the results of gamma spectrometric analysis or direct gamma dose rate measurements.

For resin wastes, analysis is performed on samples of each source of resin comprising the contents of a burial container. Scaling factors are applied to the activity of radionuclides identified by gamma spectrometry analysis to determine the activity of those radionuclides which are not detected in the gamma spectrum.

For DAW, dose rate-to-curie conversion calculations are performed to determine the total activity present in a container. Scaling factors are applied to the container's total curie content to determine the activity of individual radionuclides.

Specific procedures for determining 10 CFR 61 scaling factors are contained in OP 2527, "Sampling and Analysis for Radwaste Classification." Once the activity of each radionuclide in a burial container is estimated, the waste classification is derived using methods required by 10 CFR 61. Specific procedures for waste class determination are contained in AP 0504, "Shipment of Radioactive Material."

l. Mixed Waste

No mixed waste will be disposed as per 10 CFR 61.56(a)(8) unless properly treated. Refer to MSDS via AP 7602.

FINAL CONDITIONS

1. This procedure is retained per AP 6805.

APPENDIX H

OFF-SITE DOSE CALCULATION MANUAL

Requirement:

Technical Specification 6.7.B.1 requires that licensee initiated changes to the Off-Site Dose Calculation Manual (ODCM) be submitted to the Commission in the annual Radioactive Effluent Release Report for the period in which the change(s) was made effective.

Response:

During the reporting period, two revisions (No. 26 and 27) to the ODCM were made.

The major changes included in Revision 26 to the ODCM are:

(26.A) Changes to the Current REMP Sampling Program (Milk and Silage)

Two new locations were added to the Radiological Environmental Monitoring Program. The Downey-Spencer Farm (location TM-25 & TC-25) and Cheney Hill Farm (location TM-26 & TC-26) have been added to the Radiological Environmental Monitoring Program (Table 4.1 and Figure 4-3) as an enhancement to the program and are not required locations.

(26.B) REMP Laboratory Intercomparison Program

The description of the Intercomparison Program was revised to reflect the program used by the current laboratory contracted to perform the environmental sample analyses. This program satisfies Technical Specification 4.9.E.1.

(26.C) N-16 Dose to the Maximum West Site Boundary Location

Due to the construction of a new on-site office building near the west site boundary, Vermont Yankee had to identify a new maximum west site boundary location in order to assess the dose to this location. Duke Engineering and Services (DE&S) evaluated the relationship between the N-16 dose contribution and plant power level in late 1999. The evaluation demonstrated that the constant used in Equation 3-27 needed to be revised. This equation is used to calculate the annual dose due to N-16 decay from steam flow during power operations to the maximum site boundary location. The same methodology as previously applied in this type of dose projection has been carried over to the revision. This revision reflects identified changes in the local environment and results in an improvement to the ability to project doses in order to demonstrate compliance with regulatory limits.

(26.D) Removal of Historical Information and Example Calculations

Appendices A, C, and E were removed from the ODCM. Appendix A consists of only example calculations and is not necessary for implementation of the ODCM. Appendices C and E are historical information. Appendix C is the NRC/EG&G Evaluation of the ODCM through Revision 4. Appendix E is the NRC Safety Evaluation for Disposal of the contaminated soil below the Chemistry Lab floor. The information about this contamination is included in the 10 CFR 50.75(g) file maintained by the Chemistry Department. Appendices C and E are accessible through the Electronic Document Management System maintained by Vermont Yankee. The Table of Contents of the ODCM has a footnote indicating where to find these 2 appendices.

(26.E) Editorial Changes

Several editorial corrections were made to the ODCM as part of revision 26. With this revision, the ODCM was converted from WordPerfect to Word. Each page was reviewed for corrections needed due to the conversion process. Consequently, several needed editorial changes and typographical errors were identified that were corrected in this revision. Other editorial changes include the following;

- Reference to 40 CFR 190 was added in Section 3.11.
- Equations in section 3.11 were renumbered to correspond to the text descriptions.
- References to all contractors were deleted from the ODCM in preparation for the sale of Vermont Yankee, except where such references occur in historical information.

Revision No. 27 to the ODCM included the following changes:

(27.A) Relocation of RETS (including REMP) to the ODCM

As part of Vermont Yankee's Technical Specification improvement process, the Radiological Effluent Technical Specifications (including the Radiological Environmental Monitoring Program) were relocated to the Offsite Dose Calculation Manual (ODCM). This relocation of effluent and environmental control requirements is consistent with the NRC guidance provided in Generic Letter 89-01. This relocation of these Technical Specifications was recently approved as License Amendment No. 193 to the VY Technical Specifications. The format of the ODCM has been changed with this revision to reflect that given in NUREG-1302, "Standard Radiological Effluent Controls for Boiling Water Reactors." A cross-reference table (1.1.8) was added to the ODCM to show the relationship between the old Technical Specification requirements and the corresponding new ODCM Control requirements.

(27.B) Correction to Technical Specification Surveillance Requirement

Technical Specification Table 4.9.2, item 3c addressed stack flow indicator calibration and testing requirements. This was revised on relocation of the table to the ODCM. This table, now ODCM Table 4.1.2 now includes a frequency to calibrate the stack flow indicator every 18 months (from no requirement) and a frequency of functional check to quarterly (also from no requirement). Since these changes add new assurances that the flow monitoring equipment is maintained properly, it is considered an enhancement to the original surveillance requirements.

All the above noted ODCM changes were determined to maintain the level of protection in the calculation of off-site doses resulting from radioactive gaseous and liquid effluents since no changes have been made to either the dose calculation or setpoint methodologies. It is therefore concluded that these revisions will maintain the level of radioactive effluent control required by 10CFR20.1302, 40CFR190, 10CFR50.36a, and Appendix I to 10CFR Part 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculations.

Revisions 26 and 27 of the ODCM were submitted to the Nuclear Regulatory Commission separately but concurrently with this report.

APPENDIX I

RADIOACTIVE LIQUID, GASEOUS, AND SOLID WASTE TREATMENT SYSTEMS

Requirement: ODCM Section 10.4 requires that licensee initiated major changes to the

radioactive waste systems (liquid, gaseous, and solid) be reported to the

Commission in the annual Radioactive Effluent Release Report for the period in which the evaluation was reviewed by the Plant Operation Review Committee.

Response: There were no licensee-initiated major changes to the radioactive waste systems

during this reporting period.

APPENDIX J

ON-SITE DISPOSAL OF SEPTIC WASTE AND COOLING TOWER SILT

Requirement:

Off-Site Dose Calculation Manual, Appendices B and F requires that the dose impact due to on-site disposal of septic waste and the cooling tower silt during the reporting year and from previous years be reported to the Commission in the annual Radioactive Effluent Report if disposals occur during the reporting year. VYNPC will report in the Annual Radiological Effluent Release Report a list of the radionuclides present and the total radioactivity associated with the on-site disposal activities at Vermont Yankee.

Response:

There was one on-site disposal of septic waste, one of cooling tower silt, and one of construction sand/soil during the reporting year. The total volume of the septage spread was approximately 11,000 gallons. Approximately 100 cubic yards of cooling tower silt and 33 cubic yards of construction sand/soil from re-paving activities were also disposed of. The total radioactivity spread on the 1.9 acres (southern) on-site disposal field from 2000 spreadings and from previous years was:

<u>Nuclide</u>	Activity Spread in 2000 (Ci)	All Past Spreading Decayed to 10/00 plus 2000 Spreading (Ci)
Mn-54	2.22E-07	3.54E-07
Co-60	2.43E-06	1.34E-05
Zn-65	0.00E+00	1.17E-07
Cs-137	7.03E-06	6.59E-05

The maximum organ (including whole body) incremental dose from material spread in 2000 was estimated to be 1.08E-02 mrem/yr. The maximum organ dose from all past spreading operations, including the material spread in 2000, totaled 9.84E-02 mrem/yr. These calculated values are within the 1 mrem/yr limit applied during the period of operational control of the site. The projected hypothetical dose for the period following the loss of operational control of the site area due to all spreading operations to-date is 2.39E-01 mrem/yr versus a 5 mrem/yr dose limit.