COBALT SOURCE REDUCTION

Keywords: CONTAMINATION PREVENTION; COBALT; LOW COBALT ALLOYS; COBALT REDUCTION; NOREM

Principal Investigator: Howard Ocken
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303
U.S.A.
Phone: (415) 855-2055

Project Manager:

Objectives: To investigate the extent of various contributions to cobalt sources in reactor systems and to seek appropriate ways to minimize these sources.

Comments: Cobalt sources may be classed as follows:
1. Residual impurities in structural alloys (nickel-base inconels and iron-base stainless and carbon steels)
2. Majority constituent in hardfacing alloys (cobalt-base Stellites)

Dose rate contribution depends on several factors:
1. Release due to corrosion and/or wear
2. Surface area in contact with primary coolant
3. In-core versus ex-core source

Cobalt content of structural alloys has been much reduced:
- Inconels from 450 to 150 ppm
- 300 series stainless steels from 1,500 to 200 ppm
- Zircaloy unchanged from 1 to 1 ppm

Low cobalt alloys are being used in structural components:
- Alloy 690 tubing in replacement steam generators
- In new BWR control blade tubing and sheathing
- In PWR control rod cladding
- Zircaloy is being used in PWR fuel spacer grids

Remarks: Cobalt-free hardfacing alloys are being developed for valves:
- The weldability of EPRI's NOREM alloys has been improved to facilitate repair applications
- Field use is being implemented
- Extensive use of Antinit and Everit iron-base alloys in Siemens/KWU PWR Konvoi design

Duration: from 1990 to 1995
Funding: N/A

Status: In progress
Last Update: November 29, 1995