32 List of Most Effective Modifications¹

32.1 Exceptionally Cost-Effective Modifications

Twenty-five evaluations were found to be exceptionally cost effective in that <u>both</u> costs and collective dose (rem) were saved. Using a nominal value of \$1,000 as the value of a rem saved, the predicted values for total dollars that should be saved over the expected useful life of the modification is listed below:

	Project Description	Total \$ Saved (@ \$1,000/rem)
1.	PWR refueling machine (new plant, on critical path)	\$32,000,000
2.	PWR reactor vessel head, multi-stud tensioner/detensioner (two reactor site, on critical path)	\$29,000,000
3.	PWR reactor vessel head multi-stud tensioner/detensioner (single reactor site, on critical path)	\$14,000,000
4.	PWR integrated head assembly (new plant on critical path)	\$13,000,000
5.	Multi-stud tensioners/detensioners for PWR reactor pressure vessel (on critical path)	\$13,000,000
6.	PWR reactor vessel head tensioner/detensioner (on critical path 25% of time)	\$9,400,000
7.	Steam generator channel head decontamination (not on critical path)	\$8,300,000
8.	Reactor cavity decontamination using the WEPA Cleaning System	\$4,300,000
9.	BWR control-rod-drive handling tool (on critical path 25% of time)	\$4,200,000
10.	PWR reactor vessel head tensioner/detensioner (on critical path 25% of time)	\$4,100,000
11.	PWR reactor vessel head tensioner/detensioner (on critical path 25% of time)	\$3,500,000
12.	Shredder-compactor for dry active waste	\$3,000,000
13.	Robotics system for remote inspections of BWR moisture separator and feedwater pump areas (three reactor site)	\$1,800,000

¹J.W. Baum and G.R. Matthews, "Compendium of Cost-Effectiveness Evaluations of Modifications for Dose Reduction at Nuclear Power Plants", NUREG/CR-4373, 1985, Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7982.

32.2 Cost-Effective Modifications

Forty items with cost-effectiveness values at or below \$1,000/rem based on the BNL discounted rem presentworth model were identified. These were:

	Project Description	\$//Rem
1.	BWR-CRD scram discharge line flange for hydrolazing the header	\$35
2.	Portable shielding system for the PWR steam generator channel heads	\$86
3.	Shielding for CVCS demineralizers (Option B)	\$100
4.	Clean seal cooling water supply for BWR recirculation pump	\$110
5.	PWR power level monitor using ¹⁶ N detectors	\$120