Tritium Dose Pathway Comparison – Regulatory Guide 1.109 and Beyond

Ken Sejkora

Entergy Nuclear Northeast – Pilgrim Station

Presented at the 15th Annual RETS-REMP Workshop Wilmington, NC / 27-29 June 2005

Need For Investigation

- At 2003 RETS-REMP Workshop, I reported that tritium released via airborne pathways yielded an equivalent dose 100 to 1,000 times higher than releases via liquid pathways
- Several other licensees that have performed such a comparison have obtained similar results
- Choice of release pathway can be an important factor in overall tritium management strategy
- Inquiring minds want to know...Why does airborne pathway yield higher dose?

Basis for Comparison

- Effluent dose pathway models were based on Regulatory Guide 1.109...
 - "Calculation of Annual Doses from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I"
- RG-1.109 provides standard equations for calculating media concentrations to estimate annual intake of radionuclides
- Perform comparison of RG-1.109 models for liquid and airborne effluent pathways

Concentration in Water – Liquid Effluent Pathway

- Regulatory Guide 1.109 Equation A-1
- $C_w = 1100 * (M_p / F) * Q * exp (-\lambda t)$
 - C_w = tritium concentration in water, pCi/L
 - 1100 = convert Ci/yr and ft³/sec to pCi/L
 - M_p = mixing ratio (reciprocal of dilution factor)
 - F = flow rate in effluent stream (waste+dilution), ft³/sec
 - Q = annual tritium release rate, Ci/yr
 - λ = tritium decay constant, 6.44E-6 hr⁻¹
 - t = transit time field to table, = 24 hours

Concentration in Vegetation – Liquid Effluent Pathway

- Regulatory Guide 1.109 Equation A-10
- $\Box C_v = C_w$
 - $C_v = tritium$ concentration in vegetation, pCi/kg
 - $C_w = tritium$ concentration in water, pCi/L

Concentration in Air – Airborne Effluent Pathway

Regulatory Guide 1.109 Equation C-3

• x_i = 3.17E4 * Q * *x*/Q

- $x_i = tritium concentration in air, pCi/m³$
- 3.17E4 = 1E12 pCi/Ci / 3.15E7 sec/yr
- Q = annual tritium release rate, Ci/yr
- x/Q = atmospheric dispersion factor, sec/m³

Concentration in Vegetation – Airborne Effluent Pathway

- Regulatory Guide 1.109 Equation C-9
- C_v = 3.17E7 * Q * x/Q * 0.75 * (0.5/H)
 - $C_v = tritium$ concentration in vegetation, pCi/kg
 - 3.17E7 = 1E12 pCi/Ci * 1E3 g/kg / 3.15E7 sec/yr
 - Q = annual tritium release rate, Ci/yr
 - x/Q = atmospheric dispersion factor, sec/m³
 - 0.75 = fraction of total plant mass that is water
 - 0.5 = ratio of tritium in plant water to atmospheric water
 - $H = absolute humidity, g/m^3... 3 to 9 g H_20/m^3 air$

Intake Pathway Differences

- No inhalation pathway for waterborne releases
 - Airborne tritium from cooling pond evaporation?
- No drinking ingestion pathway for airborne releases
 - Rainout of atmospheric tritium into surface water?
- Waterborne equations assume a plant is 100% water, in 100% equilibrium with irrigation tritium concentration... 100% from irrigation
- Airborne equations assume a plant is 75% water, and 50% of plant water arises from atmospheric water... 50% remainder from irrigation

Pathway Comparisons

- Assume 1.0 Curie of tritium released
- Liquid effluent release
 - 200,000 gpm circulating water flow, equals ~4E+11 Liters/yr dilution flow

Mixing Ratio = 0.2

- Airborne effluent release
 - Elevated $x/Q = 1.0E-6 \text{ sec/m}^3$
 - Ground-level $x/Q = 9.4E-6 \text{ sec/m}^3$

Pathway Concentrations

Media	Fresh Water	Salt Water	Elevated	Ground
Water pCi/L	5.0E-1	5.0E-1		
Air pCi/m ³			3.2E-2	3.0E-1
Crops pCi/kg	5.0E-1		2.1E+0	2.0E+1
Milk pCi/L	2.5E-1		8.4E-2	2.2E-1
Meat pCi/kg	3.0E-1		1.0E-1	3.0E-1
Fish pCi/kg	4.5E-1	4.5E-1		
Shellfish pCi/kg	4.5E-1	4.5E-1		

Usage Factors - Child

Media	Fresh Water	Salt Water	Elevated	Ground
Water L/yr	510	Zero		
Air m³/yr			3700	3700
Crops kg/yr	546		546	546
Milk L/yr	330		330	330
Meat kg/yr	41		41	41
Fish kg/yr	7	7		
Shellfish kg/yr	3	3		

Pathway Dose – Child, mrem/yr

Media	Fresh Water	Salt Water	Elevated	Ground
Water Ingest.	5.2E-5			
Breathing			3.6E-5	3.3E-4
Crops	5.6E-5		1.8E-4	1.7E-3
Milk	1.7E-5		5.6E-6	1.7E-5
Meat	2.5E-6		8.4E-7	2.5E-6
Fish	6.3E-7	6.3E-7		
Shellfish	2.8E-7	2.8E-7		
Total	1.3E-4	9.0E-7	2.2E-4	2.1E-3

"Dilution Factor" -- Liquid

- 1.0 Ci discharged in 1000 gal.
 - equals concentration of 2.6E-1 uCi/mL
- Dilution flow = 200,000 gpm
 - equals 450 ft³/sec, or 4E+11 L/yr
- Mixing ratio = 0.2
- Concentration in field = 4.9E-1 pCi/L
 equals 4.9E-10 uCi/mL
- "Dilution Factor" = 2.6E-1 / 4.9E-10
 equals 5.3E+8

"Dilution Factor" -- Airborne

- 1.0 Ci discharged at 100,000 cfm
 equals 3.2E-8 Ci/sec release rate
 - equals concentration of 6.7E-10 uCi/cc
- x/Q (ground-level release) = 1E-5 sec/m³
- Concentration in field = 3.2E-13 Ci/m³
 equals 3.2E-13 uCi/cc
- "Dilution Factor" = 6.7E-10 / 3.2E-13
 equals 2.1E+3

"Dilution Factor" Comparison

- Liquid Effluent "Dilution Factor"...
 5.3E+8
- Airborne Effluent "Dilution Factor"...

2.1E+3

RG-1.109 modeling assumptions mean that liquid effluents appear to be diluted by an additional <u>five orders of magnitude</u> when compared to airborne effluents!!

"Dilution Factor" – Water Vapor

- 1.0 Ci discharged at 100,000 cfm
 - concentration of 6.7E-10 uCi/cc air
 - air at 90°F, 40%RH = 1.4E-5 g H_2O/cc air
 - 6.7E-10 / 1.4E-5 = 4.8E-5 uCi/mL H_2O
- Concentration in field = 3.2E-13 uCi/cc air
 - Absolute humidity = $5.6E-6 \text{ g H}_2\text{O/cc}$ air
 - $3.2E-13 / 5.6E-6 = 5.7E-8 \, uCi/mL \, H_2O$
- "Dilution Factor" = 4.8E-5 / 5.7E-8
 - equals 8.4E+2... within factor of 3 of airborne DF

"Dilution Factor" – Water Vapor

Airborne Effluent "Dilution Factor"...

2.1E+3

- x/Q accounts for volumetric dilution between release point and receptor
- Water Vapor "Dilution Factor"...

8.4E+2

- What about all of the natural water vapor in air?
- RG-1.109 modeling assumptions do not appear to account for "dilution" by natural water vapor in air! Is this reasonable?

Model in Recent Literature

- Simpkins A.A. "Method for Estimating Ingestion Doses to the Public Near the Savannah River Site Following an Accidental Atmospheric Release", Health Phys. 88(2):133–138; 2005
- Uses "PUFF-PLUME" dispersion model... comparable to x/Q dispersion? Not sure, but most likely it is.
- Provides equations for calculating ingestion doses from vegetables, milk, beef, fish, and water
- Alternative to RG-1.109?

Concentration in Vegetation

$$C_T^V = \frac{CONC \times 0.75 \times 0.5}{H},\tag{3}$$

where

 C_T^V = concentration in vegetation, Bq g⁻¹;

CONC =atmospheric concentration, Bq m⁻³;

- 0.75 = fraction of plant mass that is water (U.S. NRC 1977);
 - 0.5 = concentration ratio of plant tritium to atmospheric tritium (Hamby and Bauer 1994); and
 - H = absolute humidity at the time of the accident (SRS annual average of 11 g m⁻³ used if no other data available) (Hamby 1990[†]).
- Virtually identical to RG-1.109 equation

Dose_{leafy}

where

- CF = conversion factor (1,000 g kg⁻¹); and λ_w = disappearance rate for tritium in vegetable water (1 d⁻¹).
- Note allowance for tritium loss following harvest, with an integral half-life of 1 day in leafy vegetables.

 Also allows for tritium removal (loss) mechanisms following harvest

Differences from RG-1.109

- Underlying approach very similar to RG-1.109, except...
- Allows for loss of tritium from vegetation following harvest
- Different usage factors:
 - Leafy: 21 kg/yr vs. 26 kg/yr
 - Vegetable: 129 kg/yr vs. 520 kg/yr
- Different Ingestion DCFs:
 - Based on ICRP-30 vs. ICRP-2

Tritium Dose Conversion Factors

RG-1.109 Ingestion – mrem/pCi

- Adult: 1.05E-7 Teen: 1.06E-7
- Child: 2.03E-7 Infant: 3.08E-7
- RG-1.109 Inhalation mrem/pCi
 - Adult: 1.58E-7 Teen: 1.59E-7
 - Child: 3.04E-7 Infant: 4.62E-7
 - Inhalation DCFs 50% higher than ingestion
- ICRP-30 1.73E-11 Sv/Bq
 - Non age-specific
 - Ingestion & Inhalation DCFs equal: 6.40E-8 mrem/pCi

Summary

- Regulatory Guide 1.109 airborne models for tritium do yield higher dose than liquid models in most cases
- Underlying model assumptions seem to yield higher degree of "dilution" for liquid effluents compared to airborne effluents
- Airborne model does not seem to adequately describe additional "dilution" by natural water vapor in air

Summary (continued)

- New models do not appear fundamentally different from RG-1.109, but may yield lower airborne doses due to differences in:
 - Usage factors
 - Dose Conversion Factors (ICRP-30)
 - Tritium losses following harvest

Looking Forward

- Measuring tritium in environmental samples
 - Vegetation should act as a good indicator of tritium in the environment... why?
 - Literature reports plants reach equilibrium with atmospheric water within 30 min.
 - Literature also reports tritium+water turns over in plant with half life of 1 day.
 - Water is easy to extract from plant for tritium analysis.
 - May help shed light on how representative airborne tritium models are.
 - In-field airborne tritium sampling??