Investigation of Meteorological Tower Siting Criteria

Ken Sejkora
Entergy Nuclear Northeast – Pilgrim Station

Presented at the 15th Annual RETS-REMP Workshop
Wilmington, NC / 27-29 June 2005
Tower Siting Criteria

- Safety Guide 23 (1972)
- Regulatory Guide 1.23 – draft, never formally issued
- Proposed Revision 1 to Regulatory Guide 1.23 (1980)
- NUREG-0654 (1980)
- Second Proposed Revision 1 to Regulatory Guide 1.23 (1986)
“The tower or mast should be sited at approximately the same elevation as finished plant grade and in an area where plant structures will have little or no influence on the meteorological measurements.”
Proposed Revision 1 to Regulatory Guide 1.23 - 1980

- Same requirements as Safety Guide 23, plus
 - Located upwind of heat dissipating structures
 - Height of natural & man-made obstructions lower than measuring level out to a horizontal distance of 10 times the sensor-height
 - Instrument booms oriented into prevailing wind to minimize influence of tower
 - Aspirated temperature shields
Post-TMI guidance for upgrading emergency response systems

Appendix 2 refers specifically to meteorological monitoring

Refers to Proposed Revision 1 to Regulatory Guide 1.23 for design and siting of meteorological monitoring systems
Second Proposed Revision 1 to Regulatory Guide 1.23 - 1986

- Dropped any specific siting criteria
- Endorsed use of ANSI/ANS-2.5-1984 for requirements related to design, siting, calibration, etc.

However, neither the second proposed revision to Regulatory Guide 1.23, nor ANSI-ANS-2.5-1984 were ever formally adopted by the NRC
ANSI-ANS-2.5-1984

“The meteorological tower site shall represent as closely as possible the same meteorological characteristics as the region into which any airborne material will be released”

What about ground-level effluents released ‘on-site’?
Place tower at plant grade

Minimal influence from obstructions, away from heat-dissipating structures

Natural and man-made obstructions no higher than measurement level with horizontal separation of ten times the obstruction height.

Instrument booms oriented into prevailing wind

Aspirated temperature shields
Much more detailed guidance than previous
Guidance provided for flat-terrain, complex-land, and complex-water sites
Locate tower away from obstacles (buildings, cooling towers, trees, ponds, large paved areas) in flat terrain.
Separation between anemometer and obstruction should be ten time obstruction height; can be reduced to 5X for objects with cross-sectional dimension of 1 meter (utility poles, small trees)
Wind instruments mounted two tower widths away from tower, in upwind direction

Avoid air modifications by heat and moisture sources, water bodies, large parking lots; tower should not be located on or near man-made surfaces such as concrete, asphalt, etc.

Aspirated temperature shields
Ideal vs. Realistic

- Reg Guide and ANSI/ANS standards provide standard guidance with the intent of providing consistent siting, while minimizing effects of physical factors.

- Is such guidance/requirement realistic? Does it represent real conditions on-site, especially for on-site ground-level release points?
PNPS Aerial View 2

©2005 Google - Terms of Use
Imagery ©2005 DigitalGlobe - EarthSat
Ground-level Release Points

- Plant grade at 23 feet above Mean Sea Level

- **Reactor Building Vent**
 - 158 ft above plant grade, 181 ft MSL
 - 15 ft above reactor building roof
 - Nominal flow rate ~150,000 scfm, 1800 ft/min

- **Turbine Building Roof Exhausters**
 - 85 ft above plant grade, 108 ft MSL
 - 1 to 6 fans (2 typical), at 35,000 scfm each
Primary Met Tower

- Located 1350 ft WNW from on-site release point
- Guyed tower 220 ft tall, base at 80 ft MSL
 - WS, WD, Temp sensors at 33 ft, 113 ft MSL
 - WS, WD, Temp sensors at 220 ft, 300 ft MSL
- Upper level corresponds to elevated release point, 335 ft stack at 65 ft MSL (400 ft MSL)
Backup Met Tower

- Located 1000 ft ESE from on-site release point
- Free-standing tower 160 ft tall, base at 23 ft MSL... wide base
 - WS, WD, Temp sensors at 33 ft, 56 ft MSL
 - WS, WD, Temp sensors at 160 ft, 183 ft MSL
 - Upper level corresponds to height of reactor building vent
Wind Speed Comparison

![Wind Speed Comparison Graph]

- Wind Speed Bin - mph
- Frequency of Occurrence
- Primary
- Backup

- 0-2
- 2.4
- 4-6
- 6-8
- 8-10
- 10-12
- 12-14
- 14-16
- 16-18
- 18-20
- 20-22
- 22-24
- >24
Wind Direction Comparison

Frequency of Occurrence

Sector from

- Primary
- Backup
Sigma-theta Comparison
1 yr data set
Stability Class Comparison
Sigma-theta Method – 1 yr data set

![Stability Class Comparison Diagram]

- **Stability Class Comparison**
- **Sigma-theta Method**
- **1 yr data set**

Frequency of Occurrence

- **Stability Class**
 - A
 - B
 - C
 - D
 - E
 - F
 - G

Legend
- Red: Primary
- Blue: Backup

Axes
- Vertical: Frequency of Occurrence
- Horizontal: Stability Class

The diagram illustrates the frequency of occurrence for each stability class, differentiated by primary (red) and backup (blue) categories.
Stability Class Comparison
Delta-T Method – 10 yr data set

Stability Class

Frequency of Occurrence

Primary
Backup

A
B
C
D
E
F
G

Stability Class

0%
5%
10%
15%
20%
25%
30%
35%
Results were opposite of expected…

Predicted backup tower, located near parking lot with asphalt and cars, would shift stability toward unstable classes

- Expected asphalt and cars would result in 10-meter temperature value biased in positive direction
- Since $\Delta T = \text{Upper-T} - \text{Lower-T}$, subtracting a larger 10-m temperature should bias ΔT in negative direction
- More negative ΔT values should bias toward more unstable stability classes
Site Boundary X/Q Comparison
Calculated from Delta-T Stabilities

<table>
<thead>
<tr>
<th>Sector</th>
<th>Primary</th>
<th>Backup</th>
<th>Sector</th>
<th>Primary</th>
<th>Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.6E-04</td>
<td>2.5E-04</td>
<td>S</td>
<td>3.2E-06</td>
<td>1.9E-06</td>
</tr>
<tr>
<td>NNE</td>
<td>1.8E-04</td>
<td>1.7E-04</td>
<td>SSW</td>
<td>4.2E-06</td>
<td>2.9E-06</td>
</tr>
<tr>
<td>NE</td>
<td>1.8E-04</td>
<td>1.5E-04</td>
<td>SW</td>
<td>4.4E-06</td>
<td>3.9E-06</td>
</tr>
<tr>
<td>ENE</td>
<td>1.0E-04</td>
<td>9.6E-05</td>
<td>WSW</td>
<td>5.0E-06</td>
<td>5.1E-06</td>
</tr>
<tr>
<td>E</td>
<td>5.5E-05</td>
<td>4.9E-05</td>
<td>W</td>
<td>3.7E-06</td>
<td>5.6E-06</td>
</tr>
<tr>
<td>ESE</td>
<td>8.3E-06</td>
<td>6.3E-06</td>
<td>WNW</td>
<td>3.3E-06</td>
<td>5.1E-06</td>
</tr>
<tr>
<td>SE</td>
<td>5.8E-06</td>
<td>4.7E-06</td>
<td>NW</td>
<td>6.5E-06</td>
<td>9.3E-06</td>
</tr>
<tr>
<td>SSE</td>
<td>2.4E-06</td>
<td>2.3E-06</td>
<td>NNW</td>
<td>9.9E-06</td>
<td>1.9E-05</td>
</tr>
</tbody>
</table>
Site Boundary X/Q Comparison
Calculated from Delta-T Stabilities
Considerations

Which tower is “best” for on-site releases? Consider…

- Backup tower *doesn’t* meet ANSI/ANS siting criteria
- Plant is surrounded by asphalt… like backup tower – effect of delta-T, stability?
- Plant is on flat grade… like backup tower – effect on wind profiles?
- Plant is near ocean… like backup tower
Considerations (continued)

- Which level of instrumentation should be applied to on-site ground-level releases?
 - Upper level of backup tower is at same level as building vent.
 - Convention is to apply 10-meter meteorological measurements to ground-level and mixed-mode releases.
Summary

- PNPS backup tower is typically discounted because it does not meet ANSI/ANS siting criteria... site QA won’t accept it

- However, backup tower is situated in an environment that more closely mimics the on-site ground-level release points

- Use of backup tower meteorology yields a maximum site-boundary X/Q 39% **Higher** than that from the primary tower for ground-level releases
Questions for the experts...

Is it always necessary, or desirable, for a meteorological tower to meet ANSI/ANS siting criteria?

Should I use data from a tower that does not meet ANSI/ANS siting criteria?