Tritium Management
by Design

Caryl Ingram
Duke Energy

Paul D. Saunders
Suncoast Solutions, Inc.
History

- EPRI Report “Strategies for Managing Liquid Effluents – Options, Actions & Results”
 - # 1008015 released in 2003
- Developed by EPRI & a team of industry experts
 - Liquid radioactive waste processing
 - Liquid and solid effluents
 - Chemistry
- The industry’s liquid effluent activity continues to trend down. This is good!
- Sensible long-term liquid processing effluents strategy evaluation
Balanced Effluents Program (BEP)

• EPRI Effluents Strategy Project
 – Reaffirmed the importance of balancing a site’s liquid, solid, and gaseous effluents

• Tritium management is one area that many stations continue to struggle to manage
 – Production
 – Concentration
 – Control
 – Consequences
 • Environmental impact, site exposure, cost
Historical “Solutions”

- Several stations use unique tritium strategies
 - Operational
 - Processing
- Not always coordinated with other programs
- Not always effective
 - Increased inventory
 - Spikes, increased plant exposure, etc.
“Treatment” Options

• ‘Conventional’ disposal with solid waste
 – Can’t ion exchange, concentrate, cost effectively remove, place into solid form

• Release as Effluent
 – Liquid: varies by site
 – Gaseous: used by all plants
Issues

• Limiting *production* of H-3
• 3H concentrations in coolant *will* increase
 – Later planned releases result in “obvious” spikes in liquid effluent activity
 • ANI premium impact
 • Public perception, risk becoming public opinion issue
• Managing effluent source mechanisms
 – Manage releases, temperature, humidity, air exchange
 – Airborne dose > Liquid dose
• Plants were designed, constructed, and licensed to release liquid and gaseous effluents
 Zero release = zero production
• Evaluating and comparing plants on the basis of liquid volume and activity discharged may
 – Lead to erroneous performance evaluation
 – Impact cost effectiveness of program
 – Increase dose to workers
 – Increase dose to the public

• HOW DO I MAINTAIN A SUCCESSFUL, DEFENSIBLE PROGRAM?
The Plan

• EPRI tasked by utilities to develop an interactive tritium analytical software tool to evaluate actual or proposed program changes.

• Project directed and supported by an industry expert team.

Primary Goal
Make informed decisions that support a Balanced Effluents Program.
Objectives

• Develop interactive tritium analytical tool
 – Input actual and hypothetical plant data
 – Based on site ODCM and operating practices

• Use that information to:
 – Evaluate program changes
 – Track and trend data
Objectives (continued)

• Provide graphical output display
 – Capture production, inventory, and effluents
• Real time or projected values for tritium concentrations
• Additional reports as recommended by a utility support team
• The tool not intended to replace existing pathway modeling software
 – Is intended to complement its effectiveness.
ID Plant Design Performance

- Generic production mechanisms
- ID plant specific mechanisms
- Define plant specific boundaries
 - Design
 - FSAR
- Inventory
Quantify Actual Performance

- Production Calculation
 - Quantify plant specific results
 - ID current plant goals
- Inventory
 - Plant values/ quantities
 - Known and design unknown (sumps, etc)
 - Other unknown (unidentified, analytical error)
 - Point of origin for tritium inventory
 - Inventory impact factors
Quantify Actual Performance
(cont.)

• Effluents
 – Accountability by effluent stream
 – ODCM
 – NO PATHWAY MODELING IN THIS TOOL

• Mass Balance
 – Perform a mass balance
 • Production, inventory, and effluents
 – V&V model and define current state
Evaluate Results
(investigation phase)

• Benchmark plant effluent values with Industry Experience
 – Regulatory
 – EPRI
 – ANI
 – INPO
 – Possible link to Industry sources
 Evaluate Design vs. Actual
(investigation phase)

• Consequence Analysis
 – ODCM & R.G. 1.109 pathway analysis, dose
 • Identify each forms’ contribution to environmental impact
 – Compare analysis results to model & design predictions
 – For each effluent stream and pathway analysis
 • Determine reason for discrepancies
 • Conduct source analysis of abnormal results
Consequence Analysis (cont.)

– Evaluate current performance impact
 • Effluent values versus pathway impact
 • Effluent values versus on site exposure
 • Baseline cost analysis
 • Define intangible and soft issues
Evaluate Options
Improvement or Redirection

• Liquid
 – Recycle primary water
 – Recycle all waste
 – Alter release strategy
 • Develop strategic release protocol (feed and bleed)

• Solid waste
 – Treatment, VR, and disposition options
 • Solidify
 • Incineration
 • Pyrolysis
 • Direct burial environmental impact
Evaluate Options
Improvement or Redirection

• Airborne
 – Evaporator use
 – Inventory tanks/pools
 – Release elevation
 – Atmosphere temperature
 – Humidity
 – Leaks
 – Containment purges
 – Stack flow rate
 – Dehumidify
 – Cooling towers

• SFP (impacts all three forms)
 – Inventory manipulation
 • Temperature, HVAC, humidity

• Investigate new technology
Acceptability Determination
Performance Options

• Evaluate acceptability of results
 – Benchmark, site specific results, consequences, investigation results, costs

• Identify improvement opportunities

• Define potential path forward

• Perform an impact analysis (sensitivity) for each option
 – Cost benefit
 – Consequence
 – Mass balance
 – Pathway analysis
 – Intangible/soft issues/factors/benefits
Completion Path

• Plan/Recommendation
 – Develop management plan
 – Prioritized actions
 – Goals – success measurement
 – Document plan with supporting documentation

• Approval
 – Peer group – sanity validation
 – Senior management – concurrence and resources

• Validation
 – Evaluate actual results versus plan projections
Multi Year Project

- Driven by utility sponsorship
- 2004
 - Developed a technical skeleton for software
 - Team concept
 - EPRI
 - Utilities – 16 involved!
 - DOE WSRS
 - Contractors
 - ANI
 - One meeting conducted in 2004
2005

- One meeting hosted by Duke Energy
- Focus
 - Tritium management tool for delivery to utilities
 - Document development
 - Model outline and functionality
- Final document with working spreadsheet based model due December 2005.
Model Outline - Production

- Recycle
- Clean
- Makeup Water
- Activation
- Fuel Leakage
- Ternary Fission
- Fuel U-235 MOX

Per Period Time
Production = In-Plant Inventory + Removal + Known Ex-Plant Inventory + Unknown

Total Production
RCS + Containment Drywell Airspace

Go To Removal
Model Outline - Removal

- Sludge
- Processing Media (Filter/Septa, Ion Exchange, Carbon)
- Concentrates
- DAW/Metal

From Production

- Plant Liquid and Gaseous Leakage
- Monitored Gaseous Releases
- Monitored Liquid Releases
- Planned Solid Disposal

Go To Inventory
Model Outline - Inventory

- Letdown/Recycle Holdup Tank
- Waste/Off Gas
- Reactor Water Makeup
- Boric Acid Storage
- Refueling Water Storage
- Liquid Waste
- Condensate Storage
- Pools (Spent Fuel, Other)
- Tanks
- RCS
- Sumps
- Secondary System (Hotwell/Feed/Condensate)
- Containment Air Space (Production?)

Sum = In-Plant Inventory
Model Outline – Ex-Plant Inventory

- Emergency Cooling
- Condenser Cooling
- Conventional Waste

- Groundwater
- Ponds
- Other Unknown

Total Ex-Plant Inventory

Per Period Time
Production = In-Plant Inventory + Release + Known Ex-Plant Inventory + Unknown
Environment-to-Plant Interface Considerations

- Environmental samples
- ODCM impact
- Downstream cooling water intakes
- Plant HVAC intakes
- Groundwater
- Surface runoff
Long Term Impact Considerations

- Decommissioning
- Ground water monitoring
 - Wells
 - Where
 - How often
- Current leakage mitigation versus future monitoring and remediation
Path Forward

• **2006?**
 – Software has not been funded to date
 – Requires utility support through EPRI fund direction

• **Ideas?**
• **Questions?**
• **Concerns?**