Millstone OpenEMS Dose Factors Bases
Claude Flory, Chemistry, Millstone Power Station, Dominion Nuclear Connecticut
What is OpenEMS?
Glad you asked - with apologies to the vendor (they would appreciate the plug)

It’s a Next Generation System from Canberra for Computation of Off-Site Dose From Effluent Releases
OpenEMS dose formula for fish and shellfish ingestion

Dose [mRem] = Activity \times \frac{\text{Duration}}{60} \times \text{Dilution} \times \text{Mixing} \div \text{Additional Dilution} \times \text{Decay} \times \text{DCF}

Activity = \text{radioactivity concentration in uCi/ml of sample from permit data}

Duration = \text{Time of discharge in minutes from permit data}

Dilution = \frac{\text{Avg Rel Flow Rate}}{\text{Avg Rel Flow Rate} + \text{Dilution Flow Rate}}

Mixing = 1.06 to account for reconcentration of released activity back to intake

Additional Dilution = 3 for near field dilution

Decay = \text{Radioactive decay correction}

DCF = \text{Dose conversion factor in units of mRem-mL/uCi-hr}
Reg Guide 1.109 dose formula for fish and shellfish ingestion

Dose [mRem/yr] = 1100 X U X M X Q ÷ F X B X Decay X DCF

1100 = Units conversion = 1E12 [pCi/Ci] X 3.17E-8 [yr/sec] X 3.53E-2 [ft³/L]

U = Usage factor in units of kg/year

M = mixing ratio (reciprocal of dilution factor)

Q = activity released in Ci/year

F = effluent dilution flow rate in units of ft³/sec

B = bioaccumulation factor in units of liters/kg

Decay = radioactive decay = exp(-λt)

DCF = Dose Conversion Factor in units of mRem/pCi
How is OpenEMS equivalent to RG 1.109?

OpenEMS
Dose = Activity X Duration/60 X \{(Dilution X Mixing)/Add Dilution\} X Decay X Dose Conversion Factor in mRem-mL/uCi-hr

Reg Guide 1.109
Dose = Usage X Mixing ÷ Flow X Activity per year X Bioaccumulation X Decay X Dose Conversion Factor in mRem/pCi
To equate OpenEMS dose to Reg Guide 1.109 dose:

- Recognize equivalent parameters
- Incorporate some parameters into the OpenEMS dose conversion factor
- Make unit conversions
Equivalent Parameters

In OpenEMS the multiplied parameters of Activity Concentration X Duration X Dilution Are equivalent to Q/F in RG 1.109

\[
\text{Dilution} = \frac{(\text{Avg Rel Flow Rate})}{(\text{Avg Rel Flow Rate} + \text{Dilution Flow Rate})} = \frac{(\text{Avg Rel Flow Rate})}{(\text{Dilution Flow Rate})} \text{ when Dilution Flow Rate >> Ave Rel Flow}
\]

\[
\text{Avg Rel Flow} = \frac{\text{Release volume}}{\text{release duration}}
\]

\[
\text{Dilution} = \frac{\text{Release volume}}{\text{release duration/dilution flow rate}}
\]

Thus: Activity Concentration X Duration X Dilution = Activity Concentration X Duration X Release volume + Release Duration + Dilution flow rate = Activity released in year/Dilution flow rate = Q/F
Equivalent Parameters

The ratio of ‘Mixing’ to ‘Add Dilution’ in OpenEMS dose formula is equivalent to M in the RG 1.109 formula.

Thus the OpenEMS formula of:

Activity X Duration X Dilution X Mixing
÷ Additional Dilution X Decay X DCF

equates to the equivalent formula of:

Q ÷ F X M X Decay X DCF
The equivalent OpenEMS formula of:

\[Q \div F \times M \times \text{Decay} \times \text{DCF} \]

Still does not look like the RG 1.109 formula of:

\[1100 \times U \times M \times Q \div F \times B \times \text{Decay} \times \text{DCF} \]
Incorporate Parameters

The parameters of usage and bioaccumulation must be incorporated into the OpenEMS formula

Question: Where?
Answer: Within the OpenEMS dose conversion factor
Incorporate Parameters

Usage and bioaccumulation were factors to be incorporated for fish and shellfish ingestion

Usage is an incorporated factor for all pathways except inhalation and ground deposition

Other incorporated parameters included:
- Transit time for shoreline
- Geometry factor for boating and swimming
- Annual air intake for inhalation
- Shielding factor for ground deposition
- Fraction of plant matter that is water, ratio of H-3 in plant matter to H-3 in air and absolute atmospheric humidity for tritium ingestion from vegetation
- Fraction of plant mass as natural carbon and concentration of natural carbon in atmosphere for C-14 ingestion from vegetation
- Feed consumed, fractional intake to milk or meat, and time from feed to receptor for tritium and C-14 ingestion from milk and meat
- Fraction retained on crops, concentration factor, time soil is exposed, soil density, agricultural productivity for iodine and particulates ingestion from milk, meat and vegetation.
Unit Conversions

But there are conflicting units!

Need apples to apples
Incorporating Parameters and Equating Units

For fish and shellfish ingestion:
OpenEMS DCF = RG 1.109 DCF X U X B X 114155

unit conversions:
OpenEMS DCF [mRem-ml/uCi-hr]

RG 1.109 DCF [mRem/pCi]
X U [kg/yr]
X B [L/kg]
X 114155 [1E3 ml/L X 1E6 pCi/uCi X 1/8760 yr/hr]
Incorporating Parameters and Equating Units

For shoreline exposure:
OpenEMS DCF = RG 1.109 DCF X U X T X [1-exp(-λt)] X 1.142E7

unit conversions:
OpenEMS DCF [mRem-mL/uCi-hr]

RG 1.109 DCF [mRem-M²/pCi-hr]
X U [hr/yr]
X T = transit time [days]
X 1142E7
[1E3 ml/L X 1E6 pCi/uCi X 1/8760 yr/hr X 100 L/M²-days]
Incorporating Parameters and Equating Units

For swimming and boating exposure:
OpenEMS DCF = WASH-1258 DCF \times U \div K \times 1.14E5

Note: Not RG 1.109, but from WASH-1258, USAEC, July 1973

unit conversions:
OpenEMS DCF [\text{mRem-mL/uCi-hr}]

WASH-1258 DCF [\text{mRem-L/pCi-hr}]
X U [\text{yr/yr}]
X K = \text{geometry factor} = 1 \text{ for swimming and 2 for boating}
X 114E5 [1E3 \text{ml/L} \times 1E6 \text{pCi/uCi} \times 1.14E-4 \text{ yr/hr}]
Incorporating Parameters and Equating Units

For noble gas exposure:
OpenEMS DCF = RG 1.109 DCF X 0.7 X 1E6

unit conversions:
OpenEMS DCF $[\text{mRem-M}^3/\text{uCi-yr}]$

RG 1.109 DCF $[\text{mRem-M}^3/\text{pCi-yr}]$
X 0.7 = shielding factor
X 1E6 $[\text{pCi/uCi}]$
Incorporating Parameters and Equating Units

For inhalation:
OpenEMS DCF = RG 1.109 DCF X R X 1E6

unit conversions:
OpenEMS DCF [\text{mRem}\cdot\text{M}^3/\text{uCi\cdot yr}]

RG 1.109 DCF [\text{mRem}/\text{pCi}]
X R = annual air intake [\text{M}^3/\text{yr}]
X 1E6 [\text{pCi}/\text{uCi}]
Incorporating Parameters and Equating Units

For ground deposition exposure:
OpenEMS DCF = RG 1.109 DCF X S X 0.5* ÷ λ X [1-exp(-λt)] X 8.76E9
* only for iodine

unit conversions:
OpenEMS DCF \([\text{mRem-M}^2/\text{uCi}]\)

RG 1.109 DCF \([\text{mRem-M}^2/\text{pCi-hr}]\)
X S = shielding factor = 0.7
÷ λ \([\text{hr}]\)
X 1E6 \([\text{pCi/uCi}]\)
Incorporating Parameters and Equating Units

For H-3 in produce and leafy vegetable ingestion:
OpenEMS DCF = RG 1.109 DCF X U X 0.76* ÷ H X 1.2E7 X 1E-6
* produce only

unit conversions:
OpenEMS DCF [\text{mRem-M}^3/\text{uCi-sec}]

RG 1.109 DCF [\text{mRem-pCi}]
X U [kg/yr]
÷ H [M^3/g]
X 1.2E7 = 1E12 [pCi/Ci] X 1E3 [g/kg] X 1/3.15E7 [yr/sec] X 0.75 X 0.5
0.75 = fraction of total plant mass that is water (produce only)
0.5 = ratio of tritium concentration in plant water to tritium concentration in atmosphere
X 1E-6 [Ci/uCi]
Incorporating Parameters and Equating Units

For C-14 in produce and leafy vegetable ingestion:

OpenEMS DCF = RG 1.109 DCF X U X 0.3 X 0.76* X 2.2E7 X 31.5

0.3 = carbon dioxide fraction *produce only

unit conversions:

OpenEMS DCF [\text{mRem-M}^3/\text{uCi-yr}]

RG 1.109 DCF [\text{mRem/pCi}]
X U [\text{kg/yr}]
X 2.2E7 = 1E12 [\text{pCi/Ci}] X 1E3 [\text{g/kg}] X 1/3.15E7 [\text{yr/sec}] X
0.11 X 1/0.16 [\text{M}^3/g]

0.11 = fraction of total plant mass that is natural carbon
0.16 = concentration of natural carbon in atmosphere

X 31.5 = 1E-6 [\text{Ci/uCi}] X 3.15E7 [\text{sec/yr}]
Incorporating Parameters and Equating Units

For H-3 in milk and meat ingestion:
OpenEMS DCF = RG 1.109 DCF X U X Q X F ÷ H X 1.2E7 X 1E-6

unit conversions:
OpenEMS DCF [mRem-M³/uCi-sec]

RG 1.109 DCF [mRem/pCi]
X U [ℓ/yr]
X Q [kg/days] = feed consumed
X F [days/ℓ] = fraction of intake to milk or meat
÷ H [M³/g]
X 1.2E7 = 1E12 [pCi/Ci] X 1E3 [g/kg] X 1/3.15E7 [yr/sec] X 0.75 X 0.5
0.75 = fraction of total plant mass that is water (produce only)
0.5 = ratio of tritium concentration in plant water to tritium concentration in atmosphere
X 1E-6 [Ci/uCi]
Incorporating Parameters and Equating Units

For C-14 in milk and meat ingestion:
OpenEMS DCF = RG 1.109 DCF X U X 0.3 X Q X F X 2.2E7 X 31.5
0.3 = carbon dioxide fraction

unit conversions:
OpenEMS DCF [mRem-M³/uCi-yr]

RG 1.109 DCF [mRem/pCi]
X U [kg/yr]
X Q [kg/days]
X F [days/kg]
X 2.2E7 = 1E12 [pCi/Ci] X 1E3 [g/kg] X 1/3.15E7 [yr/sec] X
0.11 X 1/0.16 [M³/g]
0.11 = fraction of total plant mass that is natural carbon
0.16 = concentration of natural carbon in atmosphere
X 31.5 = 1E-6 [Ci/uCi] X 3.15E7 [sec/yr]
Millstone OpenEMS Dose Factors Bases

Revision 1
4/25/2013
Millstone OpenEMS Dose Factors Bases

Contents

Fish and shellfish ingestion
Shoreline exposure
Boating and swimming exposure
Noble Gas
Inhalation
Ground deposition
Ingestion of H-3 and C-14 in produce and leafy vegetation
Ingestion of H-3 and C-14 in milk and meat
Ingestion of iodines and particulates in produce & vegetation
Ingestion of iodines and particulates in milk & meat
Millstone OpenEMS Dose Factors Bases

From fish and shellfish bases section:

Millstone Specific Changes to Reg Guide 1.109

Bioaccumulation factors not found in Reg Guide 1.109 were taken from Reference 2. Shellfish bioaccumulation factors have been modified for Ag and Zn. For Ag, the factor is changed from 3,300 to 66,000 and, for Zn, from 50,000 to 1,000,000. These changes are based on measurements of these radionuclides in oysters from the Millstone quarry compared to curies released (Refs 3,4).
Adult Fish

<table>
<thead>
<tr>
<th>Bone</th>
<th>Liver</th>
<th>Total Body</th>
<th>Thyroid</th>
<th>Kidney</th>
<th>Lung</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-225</td>
<td>2.64E+02</td>
<td>3.63E+02</td>
<td>1.77E+01</td>
<td>4.14E+01</td>
<td>2.44E+04</td>
<td></td>
</tr>
<tr>
<td>AC-227</td>
<td>1.12E+05</td>
<td>1.49E+04</td>
<td>6.95E+02</td>
<td>4.79E+03</td>
<td>4.91E+03</td>
<td></td>
</tr>
<tr>
<td>AG-1018</td>
<td>1.27E+03</td>
<td>1.17E+03</td>
<td>6.95E+02</td>
<td>4.79E+03</td>
<td>4.78E+05</td>
<td></td>
</tr>
<tr>
<td>AG-111</td>
<td>4.60E+02</td>
<td>9.20E+02</td>
<td>9.75E+01</td>
<td>6.20E+02</td>
<td>3.53E+05</td>
<td></td>
</tr>
<tr>
<td>AM-241</td>
<td>4.52E+04</td>
<td>4.52E+04</td>
<td>2.35E+03</td>
<td>2.47E+03</td>
<td>5.60E+03</td>
<td></td>
</tr>
<tr>
<td>AM-242</td>
<td>4.52E+04</td>
<td>4.14E+04</td>
<td>3.18E+03</td>
<td>2.39E+04</td>
<td>5.21E+03</td>
<td></td>
</tr>
<tr>
<td>BA-139</td>
<td>2.33E+00</td>
<td>1.66E+00</td>
<td>6.81E+00</td>
<td>1.55E+00</td>
<td>9.42E+00</td>
<td></td>
</tr>
<tr>
<td>BA-140</td>
<td>4.87E+02</td>
<td>6.11E+01</td>
<td>3.19E+01</td>
<td>2.08E+01</td>
<td>1.00E+01</td>
<td></td>
</tr>
<tr>
<td>BA-141</td>
<td>1.13E+00</td>
<td>8.53E-04</td>
<td>3.79E-02</td>
<td>7.93E-04</td>
<td>5.32E-10</td>
<td></td>
</tr>
<tr>
<td>BA-142</td>
<td>5.11E-01</td>
<td>5.25E-04</td>
<td>3.21E-02</td>
<td>4.43E-04</td>
<td>5.56E-19</td>
<td></td>
</tr>
<tr>
<td>BE-10</td>
<td>1.52E+01</td>
<td>1.14E+02</td>
<td>9.49E+00</td>
<td>1.38E+03</td>
<td>1.71E+03</td>
<td></td>
</tr>
<tr>
<td>BI-210M</td>
<td>1.66E+01</td>
<td>1.14E+02</td>
<td>9.49E+00</td>
<td>1.38E+03</td>
<td>1.71E+03</td>
<td></td>
</tr>
<tr>
<td>C-14</td>
<td>1.23E+04</td>
<td>2.45E+03</td>
<td>2.45E+03</td>
<td>2.45E+03</td>
<td>2.45E+03</td>
<td></td>
</tr>
<tr>
<td>CA-41</td>
<td>2.19E+01</td>
<td>2.40E+01</td>
<td>2.21E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-113M</td>
<td>2.29E+04</td>
<td>7.34E+02</td>
<td>2.52E+04</td>
<td>1.84E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-115M</td>
<td>1.32E+04</td>
<td>4.22E+02</td>
<td>1.05E+04</td>
<td>5.57E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-141</td>
<td>2.24E-01</td>
<td>1.72E-02</td>
<td>7.05E-02</td>
<td>5.80E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-144</td>
<td>1.17E+01</td>
<td>6.28E-01</td>
<td>2.90E+00</td>
<td>3.98E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF-252</td>
<td>1.56E+04</td>
<td>3.77E+02</td>
<td>1.73E+04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-242</td>
<td>1.23E+03</td>
<td>8.21E+01</td>
<td>3.73E+02</td>
<td>4.75E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-243</td>
<td>3.59E+04</td>
<td>3.20E+04</td>
<td>2.25E+03</td>
<td>4.68E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-244</td>
<td>2.73E+04</td>
<td>1.72E+03</td>
<td>8.03E+03</td>
<td>4.52E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-245</td>
<td>5.62E+04</td>
<td>3.45E+03</td>
<td>1.64E+04</td>
<td>4.22E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-246</td>
<td>5.57E+04</td>
<td>3.45E+03</td>
<td>1.64E+04</td>
<td>4.14E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-247</td>
<td>5.44E+04</td>
<td>3.40E+03</td>
<td>1.58E+04</td>
<td>5.43E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM-248</td>
<td>4.52E+05</td>
<td>2.80E+04</td>
<td>1.31E+05</td>
<td>8.81E+04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO-57</td>
<td>4.20E+01</td>
<td>6.98E+01</td>
<td>1.06E+03</td>
<td>9.64E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU-64</td>
<td>1.34E+02</td>
<td>6.28E+01</td>
<td>2.80E+02</td>
<td>6.42E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-134</td>
<td>5.96E+03</td>
<td>1.42E+04</td>
<td>1.16E+04</td>
<td>4.59E+03</td>
<td>2.48E+02</td>
<td></td>
</tr>
<tr>
<td>CS-134M</td>
<td>2.04E+00</td>
<td>4.30E+00</td>
<td>2.20E+00</td>
<td>3.67E+00</td>
<td>1.52E+00</td>
<td></td>
</tr>
<tr>
<td>CS-135</td>
<td>1.87E+03</td>
<td>7.66E+02</td>
<td>6.53E+02</td>
<td>4.04E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-136</td>
<td>6.24E+02</td>
<td>1.77E+03</td>
<td>5.37E+03</td>
<td>5.80E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-137</td>
<td>7.64E+03</td>
<td>6.85E+03</td>
<td>3.55E+03</td>
<td>1.83E+00</td>
<td>2.80E+02</td>
<td></td>
</tr>
<tr>
<td>CS-138</td>
<td>5.29E+00</td>
<td>5.18E+00</td>
<td>7.68E+00</td>
<td>4.46E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-139</td>
<td>3.27E+00</td>
<td>1.77E+00</td>
<td>3.90E+00</td>
<td>5.75E+00</td>
<td>1.05E+02</td>
<td></td>
</tr>
<tr>
<td>CU-64</td>
<td>1.34E+00</td>
<td>6.28E+00</td>
<td>3.73E+00</td>
<td>1.14E+04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU-152</td>
<td>1.17E+01</td>
<td>2.34E+00</td>
<td>1.65E+01</td>
<td>1.53E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU-154</td>
<td>3.69E+01</td>
<td>3.22E+00</td>
<td>2.17E+01</td>
<td>3.28E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU-155</td>
<td>5.15E+00</td>
<td>4.72E+00</td>
<td>3.37E+00</td>
<td>5.75E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU-156</td>
<td>8.21E+01</td>
<td>6.35E+00</td>
<td>4.24E+01</td>
<td>4.35E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-18</td>
<td>5.39E+00</td>
<td>5.97E+00</td>
<td>1.60E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE-55</td>
<td>1.98E+04</td>
<td>1.37E+04</td>
<td>7.62E+03</td>
<td>7.84E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE-59</td>
<td>3.12E+04</td>
<td>2.81E+04</td>
<td>2.05E+04</td>
<td>2.45E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-3</td>
<td>2.27E+01</td>
<td>2.27E+01</td>
<td>2.27E+01</td>
<td>2.27E+01</td>
<td>2.27E+01</td>
<td></td>
</tr>
<tr>
<td>HO-166M</td>
<td>1.62E+01</td>
<td>3.84E+00</td>
<td>7.55E+00</td>
<td>7.55E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-129</td>
<td>7.94E+01</td>
<td>2.12E+00</td>
<td>1.73E+00</td>
<td>1.58E+00</td>
<td>1.06E+01</td>
<td></td>
</tr>
<tr>
<td>I-130</td>
<td>1.81E+01</td>
<td>4.53E+00</td>
<td>8.43E+00</td>
<td>4.62E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>9.97E+01</td>
<td>6.57E+00</td>
<td>4.67E+00</td>
<td>3.76E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-122</td>
<td>4.87E+00</td>
<td>4.55E+00</td>
<td>2.07E+00</td>
<td>2.45E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-133</td>
<td>3.40E+01</td>
<td>8.70E+00</td>
<td>1.03E+00</td>
<td>3.14E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-134</td>
<td>2.54E+00</td>
<td>6.90E+00</td>
<td>1.10E+00</td>
<td>6.02E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-135</td>
<td>1.06E+01</td>
<td>2.71E+00</td>
<td>1.83E+00</td>
<td>4.46E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions ?