Wind Persistence Studies Performed for Exelon Emergency Preparedness

RETS-REMP Savannah, GA June 2014 Presented By: Ian Lake

A Special Thanks To...

- Paul Holland, Exelon EP
- Dennis Oltmans, ChemStaff
- Bob Claes, ChemStaff
- Mark Carroll, Murray and Trettel, Inc

Study Objectives

- Perform wind persistence evaluation using site meteorological tower data and site specific evacuation time estimates (ETEs)
- Compare study results with current protective action strategies
- Present results to help EP staff evaluate if expanded initial protective actions are appropriate or desirable

Background

Bases

- NUREG-0654 Supplement 3, Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants
 - Section 2.5 Wind Persistence Issues
 - Suggests licensees perform wind persistence analysis to determine appropriate modification to protective action strategies
 - Section 2.7 Strategy for Rapidly Progressing Scenarios and Note 7
 - Provides basis for using 90-percent ETE values and 2 mile keyhole downwind to 5 miles

Purpose

Using the bases established...

- Methodology was developed based on maximum wind shifts over ETE time frames
- Results were provided as a function of the standard deviation of the wind movement over the site selected ETE
- Results will decrease the likelihood that once a PAR is issued, there will not be a need to correct the existing PAR due to changes in wind direction

Methodology

Justification

- ChemStaff was provided with official ETE times provided by Exelon EP
- Hourly meteorological data was provided by the program vendor (Murray and Trettle) for all available tower elevations
 - 10 years of data were provided for the 10 Exelon sites, where available
 - 2.75 years of data were provided for the 3 former CENG sites

Example ETE Evaluation

	Summer Midweek		Summer Summer Summer Summer		Summer Winter			Winter			Winter	Winter	Summer	
					Midweek Weekend	Midweek			Weekend			Midweek	Weekend	Midweek
Scenario:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Midday		Midday		Evening	Midday			Midday			Evening	Midday	
Region	Good Weather	Rain	Good Weather	Rain	Good Weather	Good Weather	Rain	Snow	Good Weather	Rain	Snow	Good Weather	Special Event	Roadway
1000				8 - C - S	Entire 2	2-Mile Regio	on, 5-Mil	e Region	and EPZ			1	1	
R01	1:45	1:50	1:35	1:40	1:35	1:40	1:45	2:25	1:30	1:40	2:10	1:35	1:35	1:50
R02	3:10	3:30	2:55	3:15	2:50	3:10	3:25	3:30	2:50	3:00	3:05	2:45	2:50	3:25
R03	5:10	5:30	4:45	5:05	4:35	5:05	5:30	5:35	4:35	4:50	4:50	4:35	4:40	5:30
300300 00					2-M	lile Region a	and Keyh	ole to 5	Miles					
R04	2:15	2:25	2:10	2:35	2:25	2:25	2:35	3:00	2:30	2:35	2:35	2:25	2.25	2:30
R05	2:25	2:25	2:05	2:15	2:25	2:20	2:45	3:00	2:20	2:25	2:35	2:25	2:25	2.25
R06	2:30	2:40	2:10	2:10	2:05	2:45	2:45	3:00	2:10	2:15	2:30	2:00	2:05	3.00
R07	2:40	2:40	2:10	2:25	2:10	2:35	2:40	3:00	2:10	2:15	2.30	2:00	2:05	3.00
ROS	2:55	3:00	2:20	2:35	2:20	2:50	3:15	3:20	2:20	2:30	2.30	2:15	2:20	3.00
R09	1:45	1:50	1:35	1:40	1:35	1:40	1:50	2:25	1.35	1.40	2.15	1.35	1:40	1.50
R10	1:45	1:50	1:35	1:40	1:35	1:45	1:45	2:25	1:30	1.40	2.10	1.35	1.35	1:50
R11	1:50	2:00	1:45	1:55	1:40	1:45	2:00	2:30	1:40	1:50	2.20	1.40	1:40	1:55
R12	1:50	2:00	1:45	1:55	1:40	1:50	2:00	2:30	1:45	2:00	2.20	1.45	1:45	1.55
R13	2:20	2:40	2:15	2:40	2:10	2:20	2:35	2:40	2.10	2.30	2.40	2:15	2:15	2.25
R14	2:50	3:10	2:40	2:55	2:35	2:45	3:10	3.15	2.40	2:45	2.50	2:35	2.25	2.23
R15	2:25	2:45	2:15	2:35	2:20	2:30	2:40	2.55	2.25	2.25	2.40	2.15	2:35	2.35
R16	2:55	3:10	2:55	3:10	2:45	3:00	3.10	3.15	3:05	3.05	2:05	2:50	2.15	2.25
1					5-Mile	Region and	Keybole	to FP7 B	oundary	5.05	5.05	2.50	2.35	2.35
R17	4:20	4:35	4:10	4:25	4:05	4:20	4.40	4.40	4.10	4.15	4.20	4.05	4:05	4.25
R18	3:40	3:50	3:30	3:35	3:30	3.35	3-50	3:50	3.25	3.35	3.25	3.25	4.03	4.23
R19	3:30	3:40	3:05	3-30	3.05	3.25	3.40	3.45	3:10	2.15	2.15	3.25	3.25	3.50
R20	3:30	3:45	3:15	3.25	3:05	3:30	3.45	3.50	3.10	3.20	3.15	3.05	3:05	3:45
R21	4:30	4:50	3.55	4.10	3:45	4.35	4.50	5:05	3.10	3.20	3:20	3:05	3:10	3:50
B22	4:25	4:45	4:00	4.15	4:00	4:35	4.50	5:00	4:00	4.10	4:20	3:45	3:45	5:15
B23	4.25	4.45	4:00	4.20	3.55	4.35	4.50	3.00	4.00	4:15	4:20	3:50	4:00	5:10
B24	4:15	4.35	3:55	4.10	3.50	4:20	4.40	4.35	3.50	4:10	4:10	3:50	4:00	5:10
825	3:30	3.50	3.15	3.40	3:10	3:20	4:50	4:45	3:50	4:00	4:00	3:50	3:55	4:50
1.2.3	5.50	3.30	3.15	5.40	5.10	3:30	3:50	3:50	3:10	3:15	3:15	3:10	3:15	3:45

Table 7-1. Time to Clear the Indicated Area of <u>90</u> Percent of the Affected Population

Limerick Generating Station Evacuation Time Estimate

KLD Engineering, P.C. Rev. 0

Areas of Investigation

- A mathematical computer model was developed to investigate:
 - Wind direction stability
 - The max change in wind direction over the site specific ETE.
 - This change was reported both in terms of sectors, as well as degrees.
 - A sector was considered a 22.5° change and was always rounded up to the nearest whole sector.
 - All available MET tower elevations
 - Seasonal and day/night variability
 - In addition to overall results Summer (June 21-September 20), Fall (September 21 - December 20), Winter (December 21-March 20), Spring (March 21 - June 20), Day (0600-1700), and Night (1800-0500) were evaluated

Example

Notes

- Data was not 100% recoverable. Only data values between 0 and 360 degrees were considered valid
 - No attempt was made to estimate the wind movement over missing time periods/invalid data.
- Sector wind shift was calculated as the maximum CW or CCW shift in degrees over an ETE time period

Statistical Analysis – Calculating Standard Deviation

- With the maximum sector shift calculated...
 - The mean of all valid maximum sector shifts was calculated

$$mean = \frac{\sum P_i}{count}$$

 The square of the difference from the mean for each valid data point was calculated

$$P_i^2 = (P_i - mean)^2$$

The Variance of the data population was calculated

$$Variance = \frac{\sum P_i^2}{count}$$

• The Standard Deviation was calculated

 $\sigma = \sqrt{Variance}$

Results

Interpreting the results

• Results were provided in the form of a summary table

	2 mile region and Keyhole to	Sensor Elevation (feet)	1 Standard Dev.		Sensor	1 Stanc	lard Dev.	Sensor	1 Standard Dev.	
	5 Miles Evacuation time (hours)		Sectors	Degrees	Elevation (feet)	Sectors	Degrees	Elevation (feet)	Sectors	Degrees
All	4	30	2.274	50.8	175	2.102	47.0	270	1.981	44.1
Winter	4	30	2.024	45.0	175	1.844	41.0	270	1.691	37.5
Spring	4	30	2.266	50.6	175	2.145	48.0	270	2.009	44.8
Summer	4	30	2.469	55.3	175	2.329	52.3	270	2.264	50.5
Fall	4	30	2.253	50.4	175	1.997	44.5	270	1.885	42.0
Average			2.253	50.3		2.079	46.5		1.962	43.7
Day	4	30	2.335	52.1	175	2.158	48.3	270	2.007	44.8
Night	4	30	2.212	49.5	175	2.046	45.7	270	1.954	43.5
Average			2.274	50.8		45.7	47.0		1.981	44.1

Interpreting the results

- Determination of the PAR
 - The "1 Standard Deviation Sectors column" was used
 - Sectors were rounded up (i.e. σ =2.111 rounds to σ =3)
 - The data as evaluated includes points associated with the downwind sector, as such that sector must be included in the sector count.
 - σ Evacuation Sectors = $2\sigma 1$
 - Depending on the level of confidence desired by management extending to 2σ or 3σ is also easily achievable
 - 2σ Evacuation Sectors = $2(2\sigma) 1$
 - 3σ Evacuation Sectors = **2(3** σ) **1**

Interpreting the results

• Example:

• Use the "All" 175' as an example

Sensor	1 Standard Dev.						
Elevation (feet)	Sectors	Degrees					
175	2.102	47.0					

- σ Evacuation Sectors = 5 sectors
- 2σ Evacuation Sectors = 11 sectors
- 3σ Evacuation Sectors = All sectors

Conclusions

- Data tables were provided to Exelon EP staff for their evaluation – no definitive PAR recommendations have been given at this time
- There was not a significant difference between the "All" and seasonal or day/night comparisons.
 - In determining PAR, management should keep simple and use the "All" dataset
- All possible tower elevations were included for comparison
 - In determining PAR, management should use the elevation height closest to the elevation of the plant vent stack

Summary of Results

	5 Mile Evacuation time (hours)	Sensor	1 Standard Dev.		Sensor	1 Standa	ard Dev.	Sensor	1 Standard Dev.	
Site		Elevation (feet)	Sectors	Degrees	Elevation (feet)	Sectors	Degrees	Elevation (feet)	Sectors	Degrees
Byron	4	250	1.699	37.5	30	1.863	41.5			
Braidwood	3	203	1.595	34.9	34	1.597	35.1			
LaSalle	2	375	1.214	25.8	33	1.317	28.3	200	1.259	26.8
Dresden	3	300	1.645	36.1	35	1.805	39.8	150	1.711	37.6
Quad Cities	3	296	1.562	34.2	33	1.674	37.0	196	1.610	35.3
TMI	5	95	3.016	67.8	145 ¹	2.940	66.0			
Peach Bottom	3	320	1.690	37.3	33	2.199	49.2	75	2.102	46.8
Limerick ²	4	175	2.102	47.0	30	2.274	50.8	270	1.981	44.1
Oyster Creek ^{3,4}	6	380	2.150	48.0	33	2.304	51.8	150	2.256	50.4
Clinton⁵	2	197	1.243	26.5	33	1.315	28.2			
Calvert Cliffs ⁶	9	197	3.090	69.6	33	3.278	73.6			
Nine Mile Point ⁶	3	200	1.758	38.6	30	1.861	41.0	100	1.822	40.1
Ginna⁵	3	250	1.637	35.8	33	1.895	42.0	150	1.707	37.5

¹ 5 year data, 150' Met Tower data started reporting January 1, 2007 ² 8 year data, M&T started collecting January 1, 2005 ³ 8 year data, M&T started collecting in January 1, 2005

⁴ Staged evacuation time used

⁵ 9 year data, M&T started collecting December 10, 2004
⁶ 2.5 year data, M&T collected from January 1, 2011 through September 30,2013